精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN的长为

【答案】3
【解析】解:∵S矩形OABC=32,
∴ABBC=32,
∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,
∴AB=DE,OD=OA,
在Rt△ODE中,tan∠DOE= = ,即OD=2DE,
∴DE2DE=32,解得DE=4,
∴AB=4,OA=8,
在Rt△OCM中,∵tan∠COM= =
而OC=AB=4,
∴MC=2,
∴M(﹣2,4),
把M(﹣2,4)代入y= 得k=﹣2×4=﹣8,
∴反比例函数解析式为y=﹣
当x=﹣8时,y=﹣ =1,则N(﹣8,1),
∴BN=4﹣1=3.
所以答案是3.
【考点精析】解答此题的关键在于理解锐角三角函数的定义的相关知识,掌握锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是
①EF= OE;②S四边形OEBF:S正方形ABCD=1:4;③BE+BF= OA;④在旋转过程中,当△BEF与△COF的面积之和最大时,AE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知圆柱的底面直径BC= ,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.
(1)如图1,若CD=CB,求证:CD是⊙O的切线;

(2)如图2,若F点在OB上,且CD⊥DF,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为: ,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:

(1)求日销售量y与时间t的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.

(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.
(2)求点B旋转到点B'的路径长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

查看答案和解析>>

同步练习册答案