【题目】如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.
【答案】解:∵小刚身高1.6米,测得其影长为2.4米, ∴8米高旗杆DE的影子为:12m,
∵测得EG的长为3米,HF的长为1米,
∴GH=12﹣3﹣1=8(m),
∴GM=MH=4m.
如图,设小桥的圆心为O,连接OM、OG.
设小桥所在圆的半径为r,
∵MN=2m,
∴OM=(r﹣2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42 ,
∴r2=(r﹣2)2+16,
解得:r=5,
答:小桥所在圆的半径为5m.
【解析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.
【考点精析】本题主要考查了勾股定理的概念和垂径定理的推论的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】列方程(组)解应用题 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料,先完成阅读填空,再按要求答题:
(1)阅读填空
sin30°= ,cos30°= ,则sin230°+cos230°= ;①
sin45°= ,cos45°= ,则sin245°+cos245°= ;②
sin60°= ,cos60°= ,则sin260°+cos260°= .③
…
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④
(2)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;
(3)已知:∠A为锐角(cosA>0)且sinA= ,求cosA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知l1∥l2∥l3 , 相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)实施首日,该片区行人闯红灯违法受处罚一共人;
(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;
(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;
(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某校举行的“中国学生营养日”活动中,设计了抽奖环节:在一只不透明的箱子中有3个球,其中2个红球,1个白球,它们除颜色外均相同.
(1)随机摸出一个球,恰好是红球就能中奖,则中奖的概率是多少?
(2)同时摸出两个球,都是红球 就能中特别奖,则中特别奖的概率是多少?(要求画树状图或列表求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com