【题目】如图,在中,,,点在边上,,点为的中点,点为边上的动点,则使四边形周长最小的点的坐标为( )
A.B.C.D.
【答案】C
【解析】
如图(见解析),在y轴上取点E,使得,连接CE、EP、ED,ED交OB于点Q,先根据等腰三角形的三线合一性质得出OB是CE的垂直平分线,再根据两点之间线段最短得当点P与点Q重合时,四边形PCAD周长最小,最后求直线ED与直线OB的交点即可.
如图,在y轴上取一点E,使得,连接CE、EP、ED,ED交OB于点Q
则点E的坐标为
点D的坐标为,是等腰直角三角形
OB是的角平分线
点为的中点
,即点C的坐标为
是CE的垂直平分线(等腰三角形的三线合一性质)
四边形PCAD周长:
由两点之间线段最短得:当P与点Q重合时,最小,最小值为,此时四边形PCAD的周长最小
设直线OB的解析式为
将代入得,解得
则直线OB的解析式为
设直线ED的解析式为
将代入得,解得
则直线ED的解析式为
联立,解得
则点Q的坐标为
故选:C.
科目:初中数学 来源: 题型:
【题目】某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形的边长.某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:
(1)经过多少时间,的面积等于矩形面积的?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与相似?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.
在平面直角坐标系中,已知点M(1,0),过点M作直线l平行于y轴,点A(﹣1,a),点B(b,2a),点 C(﹣,a﹣1),将三角形ABC进行平移,平移后点A的对应点为D,点B的对应点为E,点C的对应点为F.
(1)试判断点A是否是直线l的“伴侣点”?请说明理由;
(2)若点F刚好落在直线l上,F的纵坐标为a+b,点E落在x轴上,且三角形MFD的面积为,试判断点B是否是直线l的“伴侣点”?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1)
(1)画出△ABC,并画出△ABC关于y轴对称的△A1B1C1,并写出A的对应点A1的坐标.
(2)尺规作图,∠A的角平分线AD,交BC于点D(保留作图痕迹,不写作法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com