精英家教网 > 初中数学 > 题目详情

【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑到学校.如果小明跑步的速度均匀的,到达小彬家用了8分钟,整个跑步过程用时共32分钟.

1)以小明家为原点、向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家;

2)用点C表示出学校的位置;

3)求小彬家与学校之间的距离.

【答案】1)见解析;(2)点C对应数字是﹣1;(3)小彬家与学校位置的距离是1千米.

【解析】

1)根据跑步跑步方向和距离确定AB距离;

2)先计算跑步速度,再计算跑步的总路程,可确定学校位置;

3)根据小彬家和学校位置对应数字确定二者距离.

解:(1AB位置如图

22÷80.25

32×0.258

83.54.5

3.54.5=﹣1

故点C对应数字是﹣1,位置如下图;

3)小彬家与学校位置的距离是1千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD为矩形的四个顶点,AB=16 cm,BC=6 cm,动点PQ分别从点AC同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

如图,已知∠1、∠2互为补角,且∠3=∠B

求证:∠AED=∠ACB

证明:∵∠1+2180°,∠2+4180°

∴∠1=∠4 ______

ABEF_______

∴∠3____________

又∠3=∠B

∴∠B______________

DEBC ________

∴∠AED=∠ACB _______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C>B.如图①,ADBC于点DAE平分∠BAC

1)如图①,ADBC于点DAE平分∠BAC,能猜想出∠DAE与∠B、∠C之间的关系是什么?并说明理由.

2)如图②,AE平分∠BACFAE上的一点,且FDBC于点D,这时∠EFD与∠B、∠C有何数量关系?请说明理由.

3)如图③,AE平分∠BACFAE延长线上的一点,FDBC于点D,请你写出这时∠EFD与∠B、∠C之间的数量关系(只写结论,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=100°,AC=AE,BC=BD,则∠DCE的度数为

A. 20° B. 25° C. 30° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠C=90°,AC=10,BC=5,AXAC,点P和点QA点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=_______________时,ABCQPA全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC21,将直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.

1)在图1中,∠AOC   °,∠MOC   °

2)将图1中的三角板按图2的位置放置,使得OM在射线QA上,求∠CON的度数;

3)将上述直角三角板按图3的位置放置,OM在∠BOC的内部,说明∠BON﹣∠COM的值固定不变.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=60°AB的垂直平分线分别交ABAC于点D和点E.CE=2,则AB的长是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;

(2)计算乙队的平均成绩和方差;

(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.

查看答案和解析>>

同步练习册答案