精英家教网 > 初中数学 > 题目详情

【题目】我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:

某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:

(1)直接写出x与y之间的函数关系式;

(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;

(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?

【答案】(1)y=93﹣4x;(2)w=﹣160x+14790;(3)当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.

【解析】

试题分析:(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;

(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;

(3)根据题意得到不等式组,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.

解:(1)根据题意,

x+3x+7+y=100,

所以y=93﹣4x;

(2)w=80x+120(3x+7)+150(93﹣4x)=﹣160x+14790;

(3)依题意得

解得20x22,

因为整数x为20、21、22,

所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);

而w=﹣160x+14790,

因为k=﹣1600,

所以y随x的增大而减小,

所以当x=22时,y最小=22×(﹣160)+14790=11270,

即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】81的平方根为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店(

A.盈利了

B.亏损了

C.不赢不亏

D.盈亏不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+2x+m

1)如果抛物线过点A30),与y轴交于点B,求抛物线的解析式及点BC的坐标;

2)如图,直线AB与这条抛物线的对称轴交于点P,求直线AB的表达式和点P的坐标.

3)该抛物线有一点Dxy),使得SABC=SACD,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P23)在一次函数y2xm的图象上,则m_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=5AC=6BC=7,点DE分别在ABAC上,DEBC

1)当ADDB=43时,求DE长;

2)当ADE的周长与四边形BCED的周长相等,求DE的长.

查看答案和解析>>

同步练习册答案