【题目】如图所示,某农户想建造一花圃,用来种植两种不同的花卉,以供应城镇市场需要,现用长为36m的篱笆,一面砌墙(墙的最大可使用长度l=13m),围成中间隔有一道篱笆的长方形花圃,设花圃宽AB为x,面积为S.
(1)求S与x的函数关系式.并指出它是一次函数,还是二次函数?
(2)若要围成面积为96m2的花圃,求宽AB的长度.
(3)花圃的面积能达到108m2吗?若能,请求出AB的长度,若不能请说明理由.
【答案】(1)S=(36-3x)x=-3x2+36x;
(2)AB的长为8m;
(3)花圃的面积不能达到108m2.
【解析】试题分析:(1)等量关系为:(篱笆长-3AB)×AB=S,即可得出答案;
(2)等量关系为:(篱笆长-3AB)×AB=96,把相关数值代入求得合适的解即可;
(3)把(1)中用代数式表示的面积整理为a(x-h)2+b的形式可得最大的面积.
试题解析::(1)设花圃宽AB为x,面积为S.
则S=(36-3x)x=-3x2+36x;
(2)设AB的长是x米.
(36-3x)x=96,
解得x1=4,x2=8,
当x=4时,长方形花圃的长为36-3x=24,又墙的最大可用长度a是13m,故舍去;
当x=8时,长方形花圃的长为24-3x=12,符合题意;
∴AB的长为8m.
(3)花圃的面积为S=(36-3x)x=-3(x-6)2+108,
∴当AB长为6m,宽为16m时,有最大面积,为108平方米.
又∵当AB=6m时,长方形花圃的长为36-3×6=18m,又墙的最大可用长度a是13m,故舍去;
故花圃的面积不能达到108m2.
科目:初中数学 来源: 题型:
【题目】 已知,如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点, 且∠MAN=45.
(1)求证:MN=BM+DN.
(2)若AM、AN交对角线BD于E、F两点,设BF=y,DE=x,求y与x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一篇文章中,“的”“地”“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( )
A. 28 B. 30 C. 32 D. 34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有_______ 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com