精英家教网 > 初中数学 > 题目详情
△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.

(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
(1)见解析      (2)见解析    (3)5

试题分析:1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
证明:∵AB=AC,D为BC的中点,
∴AD⊥BC,∠B=∠C,∠BAD=∠CAD,
又∵∠MDN=∠B,
∴△ADE∽△ABD,
同理可得:△ADE∽△ACD,
∵∠MDN=∠C=∠B,
∠B+∠BAD=90°,∠ADE+∠EDC=90°,
∠B=∠MDN,
∴∠BAD=∠EDC,
∵∠B=∠C,
∴△ABD∽△DCE,
∴△ADE∽△DCE,
(2)△BDF∽△CED∽△DEF,
证明:∵∠B+∠BDF+∠BFD=180°
∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE,
由AB=AC,得∠B=∠C,
∴△BDF∽△CED,

∵BD=CD,

又∵∠C=∠EDF,
∴△BDF∽△CED∽△DEF.  
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=6.
在Rt△ABD中,AD2=AB2﹣BD2
∴AD=8
∴SABC=BC•AD=×12×8=48.
SDEF=SABC=×48=12.
又∵AD•BD=AB.DH,
∴DH===
∵△BDF∽△DEF,
∴∠DFB=∠EFD  
∵DG⊥EF,DH⊥BF,
∴DH=DG=
∵SDEF=×EF×DG=12,
∴EF==5.


点评:此题主要考查了相似三角形判定与性质以及三角形面积计算,熟练应用相似三角形的性质与判定得出对应用边与对应角的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m,与树相距15m,则树的高度为 (    )
A.9mB.7mC.4mD.5m

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O为△ABC的内切圆,∠C=90°,BO的延长线交AC于点D,若BC=3,CD=1,则⊙O的半径等于         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.
(1)如图1,若AB=AC,AD=AE

①问线段BD与CE有怎样的数量关系?并说明理由;
②求∠BMC的大小(用α表示);
(2)如图2,若AB=BC=kAC,AD=ED=kAE,则线段BD与CE的数量关系为_________,∠BMC=_________(用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC=_________(用α表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB、AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x.

(1)当x=EF时,求SDPE:SDBC的值;
(2)当CQ=CE时,求y与x之间的函数关系式;
(3)①当CQ=CE时,求y与x之间的函数关系式;
②当CQ=CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角三角形ABC到直角三角形DEF是一个相似变换,AC与DF的长度之比是3:2.
(1)DE与AB的长度之比是多少?
(2)已知直角三角形ABC的周长是12cm,面积是6cm2,求直角三角形DEF的周长与面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,AB=9cm,AC=6cm,D是AC上的一点,且AD=2cm,过点D作直线DE交AB于点E,使所得的三角形与原三角形相似,则AE= _________ cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在如图所示方格纸中,已知△DEF是由△ABC经相似变换所得的像,那么△DEF的每条边都扩大到原来的 _________ 倍.

查看答案和解析>>

同步练习册答案