【题目】按要求完成作图:
(1)作出△ABC关于x轴对称的图形;
(2)写出A、B、C的对应点A′、B′、C′的坐标;
(3)直接写出△ABC的面积 .
【答案】(1)见解析(2)A′(﹣4,﹣1)、B′(﹣3,﹣3)、C′(﹣1,﹣2)(3)2.5
【解析】
(1)依据轴对称的性质,即可得到△ABC关于x轴对称的图形;
(2)依据对应点A′、B′、C′的位置,即可得到其坐标;
(3)依据割补法进行计算,即可得到△ABC的面积.
解:(1)如图所示,△A'B'C'即为所求;
(2)由图可得,A′(﹣4,﹣1)、B′(﹣3,﹣3)、C′(﹣1,﹣2);
(3)△ABC的面积=2×3﹣×1×2﹣×1×2﹣×1×3=6﹣1﹣1﹣1.5=2.5.
故答案为:(1)见解析 ;(2)A′(﹣4,﹣1)、B′(﹣3,﹣3)、C′(﹣1,﹣2);
(3)2.5.
科目:初中数学 来源: 题型:
【题目】如图,在中, , , 为上一个动点,过点作交折线于点,设的长为, 的面积为, 关于函数图象, 两段组成,如图所示.
()当时,求的长.
()求图中的图象段的函数解析式.
()求为何值时, 的面积为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF=;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板如图摆放,点F是 45°角三角板△ABC的斜边的中点,AC=4.当 30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点 M, N.在旋转过程中有以下结论:①MF=NF;②CF与MN可能相等吗;③MN 长度的最小值为 2;④四边形CMFN的面积保持不变; ⑤△CMN面积的最大值为 2.其中正确的个数是_________.(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )
A. 4 B. 6 C. 8 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人,在扇形统计图中“D”对应的圆心角的度数为 ;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?( )
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民选购家用净水器.我市飞龙商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000 元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元? (注: 毛利润=售价一进价) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形(四边相等,四个角都是直角),点为边上异于点的一动点,,交于点,点为延长线上一定点,满足,的延长线与交于点,连接.
(1)判断是 三角形.
(2)求证: ≌.
(3)探究是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com