精英家教网 > 初中数学 > 题目详情

【题目】如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是 上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是(
A.15°
B.20°
C.25°
D.30°

【答案】C
【解析】解;如图
由四边形的内角和定理,得
∠BOA=360°﹣90°﹣90°﹣80°=100°,
= ,得
∠AOC=∠BOC=50°.
由圆周角定理,得
∠ADC= ∠AOC=25°,
故选:C.
【考点精析】掌握切线的性质定理是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)因式分解:﹣xyz2+4xyz﹣4xy

2)因式分解:9m+n2m﹣n2

3)解方程: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校对学生的课外阅读时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).

组别

阅读时间x(时)

人数

A

0≤x<10

k

B

10≤x<20

100

C

20≤x<30

m

D

30≤x<40

140

E

x≥40

n

请结合以上信息解答下列问题

(1)阅读时间分组统计表中k、m、n的值分别是         

(2)补全阅读人数分组统计图”;

(3)若全校有3000名学生,请估算全校课外阅读时间在20小时以下(不含20小时)的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.

(1)求证:∠ADB=∠CDB;

(2)若∠ADC=90°,求证:四边形MPND是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:
(1)该种软件上市第几个月后开始盈利?
(2)求累积利润S(万元)与时间t(月)之间的函数表达式;
(3)截止到几月末,公司累积利润达到30万元?
(4)求公司第6个月末所累积的利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:

穗长x

频数

4.0≤x<4.3

1

4.3≤x<4.6

1

4.6≤x<4.9

2

4.9≤x<5.2

5

5.2≤x<5.5

11

5.5≤x<5.8

15

5.8≤x<6.1

28

6.1≤x<6.4

13

6.4≤x<6.7

11

6.7≤x<7.0

10

7.0≤x<7.3

2

7.3≤x<7.6

1

(Ⅰ)补全直方图;

(Ⅱ)共抽取了麦穗   棵;

(Ⅲ)频数分布表的组距是   ,组数是   

(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为(
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知, 成正比例, 成反比例,并且当时, ,当时,

)求关于的函数关系式.

)当时,求的值.

【答案】;(

【解析】分析:(1)首先根据x成正比例, x成反比例,且当x=1时,y=4;当x=2时,y=5,求出 x的关系式,进而求出yx的关系式,(2)根据(1)问求出的yx之间的关系式,令y=0,即可求出x的值.

本题解析:

)设

∵当时, ,当时,

解得,

关于的函数关系式为

)把代入得,

解得:

点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.

型】解答
束】
24

【题目】如图,菱形的对角线相交于点,过点,连接,连接于点.

(1)求证:;

(2)若菱形的边长为2, .求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系中,的三个顶点坐标分别是,其中,点C关于x轴的对称点为是等腰直角三角形.

的值等于______请直接写出

把点A沿直线翻折,落在点的位置,如果点D在第一象限,是以为腰的等腰直角三角形,那么点D的坐标为______请直接写出

求四边形的面积.

查看答案和解析>>

同步练习册答案