精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.

(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:过点B作BD⊥x轴,垂足为D,

∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,

∴∠BCD=∠CAO,

又∵∠BDC=∠COA=90°,CB=AC,

∴△BCD≌△CAO,

∴BD=OC=1,CD=OA=2,

∴点B的坐标为(﹣3,1)


(2)

解:抛物线y=ax2+ax﹣2经过点B(﹣3,1),

则得到1=9a﹣3a﹣2,

解得a=

所以抛物线的解析式为y= x2+ x﹣2


(3)

解:假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:

①若以点C为直角顶点;

则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1

过点P1作P1M⊥x轴,

∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,

∴△MP1C≌△DBC.

∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);

②若以点A为直角顶点;

则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2

过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,

∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),

③以A为直角顶点的等腰Rt△ACP的顶点P有两种情况.即过点A作直线L⊥AC,在直线L上截取AP=AC时,点P可能在y轴右侧,即现在解答情况②的点P2

点P也可能在y轴左侧,即还有第③种情况的点P3.因此,然后过P3作P3G⊥y轴于G,同理:△AGP3≌△CAO,

∴GP3=OA=2,AG=OC=1,

∴P3为(﹣2,3);

经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y= x2+ x﹣2上,点P3(﹣2,3)不在抛物线上.


【解析】(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.

(1)求证:∠PCA=∠B
(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB∥CD,E是AB的中点,CE=DE.

(1)求证:∠AEC=∠BED
(2)求证:AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为(

A.4
B.3
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)

(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿EF折叠,使点B,D重合,已知AB=3,AD=4,则 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=
上面结论正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案