【题目】如图所示,在中,分别是边上的点,且,则______.
【答案】
【解析】
在△ABC中,根据等边对等角得出∠B=∠C.在△BEP和△CFP中根据等边对等角和三角形内角和定理,∠EPB=∠FPC,等量代换得到∠BEP=∠FPC,根据三角形外角的性质得出∠B=∠EPF=50°,然后即可三角形内角和定理即可求出∠A的度数.
∵在△ABC中,AB=AC,
∴∠B=∠C.
∵BE=BP,
∴∠BEP=∠EPB,
同理,∠FPC=∠PFC.
∵∠B+2∠EPB=∠C+2∠FPC=180°,
∴∠EPB=∠FPC,
∴∠BEP=∠FPC.
∵∠B+∠BEP=∠EPC=∠EPF+∠FPC,
∴∠B=∠EPF=50°,
∴∠A=180°-2∠B=180°-2×50°=80°.
故答案为:80.
科目:初中数学 来源: 题型:
【题目】小颖、小明、小亮在解方程时,解法各不相同,请你回答下列问题:
(1)简要分析一下三位同学的解法是否正确.如果正确,他运用了哪种解一元二次方程的方法;如果错误,错误的原因是什么?你是否从中体会到解一元二次方程的数学思想是什么?
(2)请你选择一种你熟练的方法尝试解一元二次方程.
由方程,得 因此,, 所以这个数是0或3 | 方程两边同时约去,得:所以这个数是3 |
由方程,得 即.于是, 或.因此, 所以这个数是0或3. |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=4,AD=10,E是AD的一点,且AE=2,M是AB上一点,射线ME交CD的延长线于点F,EG⊥ME交BC于点G,连接MG,FG,FG交AD于点N.
(1)当点M为AB中点时,则DF= ,FG= .(直接写出答案)
(2)在整个运动过程中,的值是否会变化,若不变,求出它的值;若变化,请说明理由.
(3)若△EGN为等腰三角形时,请求出所有满足条件的AM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,于,连接交于点,.
(1)如图1,求证:;
(2)如图2,于点,求证:;
(3)如图3,点在的延长线上,于点交于点,连接,交的延长线于点,连接,当的面积为时, 求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com