精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.
(1)求证:△FBE≌△COE;
(2)将ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.

【答案】
(1)证明:如图,取BC的中点G,连接EG.

∵E是BO的中点,

∴EG是△BFC的中位线,

∴EG= BF.

同理,EG= OC,

∴BF=OC.

又∵四边形ABCD是平行四边形,

∴AO=CO,

∴BF=OC.

又∵BF∥AC,

∴∠FBE=∠COE.

在△FBE△COE中,

∴△FBE≌△COE(AAS)


(2)解:当AC=BD时,四边形AFBO是菱形.理由如下:

∵AC=BD,

∴平行四边形ABCD是矩形,

∴OA=OC=OB=OD,

∴平行四边形AFBO是菱形.


【解析】(1)由AAS证得两个三角形全等即可.(2)当平行四边形ABCD的对角线相等,即平行四边形ABCD是矩形时,四边形AFBO是菱形.
【考点精析】根据题目的已知条件,利用平行四边形的性质和菱形的判定方法的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0)

(1)如图,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他个点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置坐标(写出2个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1)求证:AG与⊙O相切.
(2)若AC=6,AB=8,BE=3,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题。
(1)解方程:x2﹣2x﹣3=0
(2)若关于x的方程2x2﹣5x+c=0没有实数根,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,A,B,C三点的坐标为( ,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示.

时间x(天)

0

4

8

12

16

20

销量y1(万朵)

0

16

24

24

16

0

与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 的函数关系如图所示.

(1)求y1与x的二次函数关系式及自变量x的取值范围;
(2)求y2与x的函数关系式及自变量x的取值范围;
(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC相交于点D,且CD=2,BC=4,
(1)求⊙O的半径;
(2)连接AD并延长,交BC于点E,取BE的中点F,连接DF,试判断DF与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=1,DF= ,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案