【题目】如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC相交于点D,且CD=2,BC=4,
(1)求⊙O的半径;
(2)连接AD并延长,交BC于点E,取BE的中点F,连接DF,试判断DF与⊙O的位置关系,并说明理由.
【答案】
(1)解:设⊙O的半径为R,
∵BC是⊙O的切线,
∴∠OBC=90°,
∴OB2+BC2=OC2,
即R2+42=(R+2)2,
解得:R=3,
即⊙O的半径为3
(2)解:DF与⊙O相切;理由如下:
如图所示:连接BD,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠BDE=90°,
∵F是BE的中点,
∴DF= BE=BF,
∴∠DBF=∠BDF,
∵∠DBF+∠OBD=90°,
∴∠BDF+∠ODB=90°,
∴DF⊥OD,
∴DF与⊙O相切.
【解析】(1)设⊙O的半径为R,由切线的性质得出∠OBC=90°,由勾股定理得出方程,解方程即可;(2)连接BD,由等腰三角形的性质得出∠OBD=∠ODB,由圆周角定理得出∠ADB=90°,求出∠BDE=90°,由直角三角形的性质得出DF= BE=BF,得出∠DBF=∠BDF,证出∠BDF+∠ODB=90°,即可得出结论.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:
【题目】如图,在A地往北60m的B处有一幢房,西80m的C处有一变电设施,在BC的中点D处有古建筑.因施工需要在A处进行一次爆破,为使房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.
(1)求证:△FBE≌△COE;
(2)将ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是( )
A.AD=BF
B.△ABE≌FDE
C.sin
D.△ABE∽△CBD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.
(1)求证:FD2=FBFC;
(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)在这次问卷调查中一共抽取了名学生,a=%;
(2)请补全条形统计图;
(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;
(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD= AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com