精英家教网 > 初中数学 > 题目详情
6.已知A(-2,3),则A点关于原点的对称点的坐标为(  )
A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)

分析 根据关于原点对称点的坐标原则得出结论.

解答 解:A点关于原点的对称点的坐标为(2,-3);
故选D.

点评 本题考查了关于原点对称的点的坐标,非常简单,如果两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.已知方程(m-2)x|m|-1+(n+3)${y}^{{n}^{2}-8}$=6是关于x,y的二元一次方程.
(1)求m,n的值;
(2)求x=$\frac{1}{2}$时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知关于x的方程(m+2)x2-2(m-1)x+m+1=0有两个不相等的实数根,并且一次项系数不小于零,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解三元一次方程组$\left\{\begin{array}{l}{x+2y+z=7}\\{2x-y+3z=7}\\{3x+y+2z=18}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,△ABO为等腰直角三角形,∠A=90°,点B的坐标为(2,0),点E是AB的中点,点C坐标为(-2,0),连接CE交AO于点D.
(1)求直线CD的解析式;
(2)试探索S△CDO与S△ADE的关系,并说明理由;
(3)求S四边形OBDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,等腰三角形ABC中,AC=BC=10,AB=12.
(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1,四边形DECB的面积为S2,求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知方程(m-5)(m-3)xm-2+(m-3)x+5=0.
(1)当m为何值时,此方程为一元二次方程?
(2)当m为何值时,此方程为一元一次方程?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,以A(1,1)为顶点的抛物线y=x2-2x+c与y轴交于点C,正方形ABCD的边CD与y轴重合,点P为第一象限内抛物线上的点且不与点A重合,过点P作PF∥x轴交y轴于点F,PE∥y轴交x轴于点E.设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为L.
(1)c的值为2.
(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.
(3)当m<2时,求L与m之间的函数关系式.
(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,梯形ABCD中AD∥BC,AB=DC,AE=GF=GC
(1)求证:四边形AEFG是平行四边形;
(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.

查看答案和解析>>

同步练习册答案