精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点从点沿边匀速运动到点,过点于点,线段,则能够反映之间函数关系的图象大致是(

A.B.C.D.

【答案】D

【解析】

分两种情况:①当P点在OA上时,即0≤x≤2时;②当P点在AB上时,即2x≤4时,求出这两种情况下的PC长,则y=PCOC的函数式可用x表示出来,对照选项即可判断.

解:∵△AOB是等腰直角三角形,AB=

OB=4

①当P点在OA上时,即0≤x≤2时,

PC=OC=xSPOC=y=PCOC=x2

是开口向上的抛物线,当x=2时,y=2

OC=x,则BC=4-xPC=BC=4-x

SPOC=y=PCOC=x4-x=-x2+2x

是开口向下的抛物线,当x=4时,y=0

综上所述,D答案符合运动过程中yx的函数关系式.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形OABC的长是12m,宽是4m,按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+2x+c表示.

1)请写出该抛物线的函数关系式;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进30海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则

=__(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,xy的几组对应值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=  

2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.

3)观察函数图象,写出两条函数的性质.

4)进一步探究函数图象发现:

①函数图象与x轴有  个交点,所以对应的方程x2﹣2|x|=0   个实数根;

②方程x2﹣2|x|=2  个实数根.

③关于x的方程x2﹣2|x|=a4个实数根时,a的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0无解,求证:它的倒方程也一定无解;

3)一元二次方程ax22x+c0a≠c)与它的倒方程只有一个公共解,它的倒方程只有一个解,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.

求甲、乙两种智能设备单价;

垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形.点A的坐标为(02),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A.

1)求反比例函数与一次函数的解析式;

2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

同步练习册答案