精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连接CE交AB于点F.
(1)求证:DE=DF;
(2)连AE,若OF=1,BF=3,求DE长.
(1)连接OE,
∵DE为圆的切线,
∴OE⊥ED,
∴∠OEC+∠CED=90°,
∵OC⊥AD,
∴∠COD=90°,
∴∠C+∠CFO=90°,
∵∠CFO=∠DFE,
∴∠C+∠DFE=90°,
∵OC=OE,
∴∠C=∠OEC,
∴∠DFE=∠DEF,
∴DE=DF;

(2)在Rt△OED中,OE=OB=OF+FB=1+3=4,
根据勾股定理得:OD2=OE2+ED2,即(1+DF)2=(1+DE)2=42+DE2
解得:DE=7.5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

⊙O的半径是5cm,O到直线l的距离OP=3cm,Q为l上一点且PQ=4.2cm,则点Q(  )
A.在⊙O内B.在⊙O上
C.在⊙O外D.以上情况都有可能

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠C=90°,∠B=30°,O为AB上一点,AO=2,⊙O的半径为
9
5
,⊙O与AC的位置关系是(  )
A.相交B.相离C.相切D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

⊙O的半径为6cm,弦AB的长为6
3
cm
,以O为圆心,3cm长为半径作圆,与弦AB有______个公共交点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆O1和半圆O2,其中O1和O2分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
(1)连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;
(2)如图二,过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O2的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O1的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是半圆的直径,CD是这个半圆的切线,C是切点,且∠ACD=30°,下列四个结论中不正确的是(  )
A.AB=2ACB.AB2=AC2+BC2
C.BC=
3
AC
D.AB=
2
BC

查看答案和解析>>

同步练习册答案