【题目】如图1,△ABC(AC<BC<AC)绕点C顺时针旋转得△DEC,射线AB交射线DE于点F.
(1)∠AFD与∠BCE的关系是 ;
(2)如图2,当旋转角为60°时,点D,点B与线段AC的中点O恰好在同一直线上,延长DO至点G,使OG=OD,连接GC.
①∠AFD与∠GCD的关系是 ,请说明理由;
②如图3,连接AE,BE,若∠ACB=45°,CE=4,求线段AE的长度.
【答案】(1)∠AFD=∠BCE;(2)①∠AFD=∠GCD或∠AFD+∠GCD=180°;②2+2.
【解析】
(1)先判断出∠BCE=∠ACD,再利用三角形的内角和定理,判断出∠ACD=∠AFD,即可得出结论;
(2)①先判断出∠ACD是等边三角形,得出AD=CD,再判断出∠ACD=∠AFD,进而判断出△AOD≌△COG(SAS),得出AD=CG,即可得出结论;
②先判断出∠GCB=∠BCE,进而判断出∠GCB=∠ACE,进而判断出△GCB≌△ACE,得出BC=CE=4,最后用锐角三角函数即可得出结论.
解:(1)如图1,
AF与CD的交点记作点N,由旋转知,∠ACB=∠DCE,∠A=∠D,
∴∠BCE=∠ACD,
∵∠ACD=180°﹣∠A﹣∠ANC,∠AFD=180°﹣∠D﹣∠DNF,∠ANC=∠DNF,
∴∠ACD=∠AFD,
∴∠AFD=∠BCE,
故答案为:∠AFD=∠BCE;
(2)①∠AFD=∠GCD或∠AFD+∠GCD=180°,
理由:如图2,连接AD,由旋转知,∠CAB=∠CDE,CA=CD,∠ACD=60°,
∴△ACD是等边三角形,∴AD=CD,
∵∠AMC=∠DMF,
∴△ACM∽△DFM,
∴∠ACD=∠AFD,
∵O是AC的中点,
∴AO=CO,
∵OD=OG,∠AOD=∠COG,
∴△AOD≌△COG(SAS),
∴AD=CG,
∴CG=CD,
∴∠GCD=2∠ACD=120°,
∴∠AFD=∠GCD或∠AFD+∠GCD=180°,
故答案为:∠AFD=∠GCD或∠AFD+∠GCD=180°;
②由①知,∠GCD=120°,∠ACD=∠BCE=60°,
∴∠GCA=∠GCD﹣∠ACD=60°,
∴∠GCA=∠BCE,
∵∠GCB=∠GCA+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠GCB=∠ACE,
由①知,CG=CD,CD=CA,
∴CG=CA,
∵BC=EC=4,
∴△GCB≌△ACE(SAS),
∴GB=AE,
∵CG=CD,OG=OD,
∴CO⊥GD,
∴∠COG=∠COB=90°
在Rt△BOC中,BO=BCsin∠ACB=2,CO=BCcos∠ACB=2,
在Rt△GOC中,GO=COtan∠GCA=2,
∴GB=CO+BO=2+2,
∴AE=2+2.
科目:初中数学 来源: 题型:
【题目】为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:家庭汽车,:公交车,:电动车,:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.
(1)本次调查中,一共调查了 名市民;扇形统计图中,项对应的扇形圆心角是_____ ;
(2)补全条形统计图;
(3)若甲上班时从三种交通工具中随机选择一种, 乙上班时从三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选种交通工具上班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解答下列问题:
材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.
材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.
(1)求证:任两个“网红数”之和一定能被11整除;
(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下
(1)请补充完成下面的成绩统计分析表:
平均分 | 方差 | 中位数 | 合格率 | 优秀率 | |
男生 | 6.9 | 2.4 | ______ | 91.7% | 16.7% |
女生 | ______ | 1.3 | ______ | 83.3% | 8.3% |
(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;
(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB,OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,点O所在位置应满足什么条件?(直接写出答案不需要说明理由.)
(3)在图2中作出点O,使得四边形DGFE是正方形(保留作图痕迹,不写作法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点A,B在x轴的负半轴上,反比例函数y=(k1≠0)在第二象限内的图象经过正方形ABCD的顶点D(m,2)和BC边上的点G(n,),直线y=k2x+b(k2≠0)经过点D,点G,则不等式≤k2x+b的解集为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转角得到另一条数轴轴和轴构成一个平面斜坐标系
规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对为点在平面斜坐标系中的斜坐标.如图2,在平面斜坐标系中,已知,点的斜坐标是,点的斜坐标是
(1)连接,求线段的长;
(2)将线段绕点顺时针旋转到(点与点对应),求点的斜坐标;
(3)若点是直线上一动点,在斜坐标系确定的平面内以点为圆心,长为半径作,当⊙与轴相切时,求点的斜坐标,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com