精英家教网 > 初中数学 > 题目详情

如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

5.5米.

解析试题分析:利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
试题解析:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB

∵DE=0.4m,EF=0.2m,AC=1.5m,CD=8m,

∴BC=4米,
∴AB=AC+BC=1.5+4=5.5米
考点: 相似三角形的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2),(正方形网格中,每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A2BC2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点的坐标为,点轴上,是线段的中点.将线段绕着点顺时针方向旋转,得到线段,连结

(1)判断的形状,并简要说明理由;
(2)当时,试问:以为顶点的四边形能否为平行四边形?若能,求出相应的 的值?若不能,请说明理由;
(3)当为何值时,相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,点D在边AB上,满足且∠ACD=∠ABC,若AC=2,AD=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,SDEF∶SABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在梯形ABCD中,AB//CD,点E在线段DA上,直线CE与BA的延长线交于点G,

(1)求证:△CDE∽△GAE;
(2)当DE:EA=1:2时,过点E作EF//CD交BC于点F且 CD=4,EF=6,求AB的长

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.

(1)求证:△CED∽△ACD;
(2)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).

(1)请画出△ABC关于y轴对称的△A1B1C1
(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出SA1B1C1:SA2B2C2的值.

查看答案和解析>>

同步练习册答案