精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在ABC中,∠C=90°,ACBCAD平分∠CAB,交BCD,能否在AB上确定一点E,使BDE的周长等于AB的长?请说明理由.

【答案】能,理由见解析.

【解析】

如图作DE⊥ABE,根据角平分线的性质得DC=DE,进而证明Rt△ACD≌Rt△AED,得到AC=AE,再利用相等线段之间的替换即可得证.

能.如图,过DDE⊥AB,交ABE点,则E点即可满足要求.

理由:∵AD平分∠CAB,CD⊥AC,DE⊥AB,

∴CD=DE,

Rt△ACDRt△AED中,

∴Rt△ACD≌Rt△AED(HL),

∴AC=AE,

∵AC=BC,

∴BC=AE,

∴△BDE的周长=BD+DE+EB=BD+DC+EB=BC+EB=AE+EB=AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 (其中 )与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,抛物线的对称轴l与x轴交于点D,且点D恰好在线段BC的垂直平分线上.
(1)求抛物线的关系式;
(2)过点 的线段MN∥y轴,与BC交于点P,与抛物线交于点N.若点E是直线l上一点,且∠BED=∠MNB-∠ACO时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个底面直径为 5cm,高为 18cm 的圆柱形瓶内装满水,再将瓶内得水倒入一个底面直径为 6cm,高为 10cm 的圆柱形玻璃杯中,能否完全装下? 若装不下,那么瓶内水面还有多高? 若未能装满,求杯内水面离杯口的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.

(1)写出数轴上点A、C表示的数;

(2)P、Q分别从A、C同时出发,P以每秒2个单位长度的速度沿数轴向右匀速运动,Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,N在线段CQ,CN=CQ.设运动的时间为t(t>0).

数轴上点M、N表示的数分别是    (用含t的式子表示);

t为何值时,M、N两点到原点的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
(1)求证:△BCF≌△BA1D.
(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究规律,完成相关题目.

老师说:“我定义了一种新的运算,叫(加乘)运算.”

然后老师写出了一些按照(加乘)运算的运算法则进行运算的算式:

(+5)(+2)=+7;(-3)(-5)=+8;

(-3)(+4)=-7; (+5)(-6)=-11;

0(+8)=8;(-6)0=6.

小明看了这些算式后说:“我知道老师定义的(加乘)运算的运算法则了.”

聪明的你也明白了吗?

(1)归纳(加乘)运算的运算法则:

两数进行(加乘)运算时,运算法则是什么.

特别地,0和任何数进行(加乘)运算,或任何数和0进行(加乘)运算运算法则是什么.

(2)计算:

①()[)].(括号的作用与它在有理数运算中的作用一致)

② 若(( ).求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.

(1)求证:BE是⊙O的切线;
(2)若BC= ,AC=5,求圆的直径AD及切线BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,则的度数是  

A. B. C. D.

查看答案和解析>>

同步练习册答案