精英家教网 > 初中数学 > 题目详情

【题目】某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:

次数

1

2

3

4

5

小王

60

75

100

90

75

小李

70

90

100

80

80

根据上表解答下列问题:

(1)完成下表:

姓名

平均成绩(分)

中位数(分)

众数(分)

方差

小王

80

75

75

190

小李

(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?

(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.

【答案】(1)84 80 80 104;(2).小王的优秀率为40%.小李的优秀率为80%;(3)小李,理由见解析

【解析】试题分析:(1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;根据表中的数据分别计算优秀率即可;(3)因为小李的成绩比小王的成绩稳定,且优秀率比小王的高,因此选小李参加比赛比较合适

试题解析:

(1)84,80,80,104;

(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为×100%=40%.小李的优秀率为×100%=80%.

(3)因为小李的成绩比小王的成绩稳定,且优秀率比小王的高,因此选小李参加比赛比较合适.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把15°30′化成度的形式,则15°30′=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知m+n=2,mn=-2,(2-m)(2-n)的值为(  )

A. 2 B. -2 C. 0 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(2x)(x3x+1)_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.

(1)求抛物线的解析式;

(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;

(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各式因式分解

(1)4x3﹣16xy2

(2)(x2﹣2x)2+2(x2﹣2x)+1;

(3)a4﹣16;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.

(1)求证:HEA=CGF;

(2)当AH=DG时,求证:菱形EFGH为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的顶点M是直线=-和直线的交点.

(1)若直线过点D(0,-3),求M点的坐标及二次函数的解析式;

(2)试证明无论取任何值,二次函数的图象与直线总有两个不同的交点;

(3)在(1)的条件下,若二次函数的图象与轴交于点C,与的右交点为A,试在直线=-上求异于M的点P,使P在△CMA的外接圆上.

查看答案和解析>>

同步练习册答案