精英家教网 > 初中数学 > 题目详情

已知:ABCD是正方形,△DCE是等边三角形,求∠AEB的度数.

解:①当点E在正方形外部时,


∵△DCE是等边三角形,ABCD是正方形,
∴AD=DE、∠ADE=90°+60°=150°,
∴∠DEA=15°,
同理∠CEB=15°,
∴∠AEB=30度.
②当点E在正方形内部时,

过E作AD的平行线,交AB、CD与点M、N,
∵△DCE是等边三角形,ABCD是正方形,
∴EN=AD,
∴EM=
∵AM=AB=AD,
∴∠AEM=75°,
∴∠AEB=150度.
故∠AEB的度数为30度或150度.
分析:分两种情况,E在正方形内部和外部,根据正方形的性质以及等边三角形的性质,结合三角函数的运用求解即可.
点评:本题考查了正方形的性质以及等边三角形的性质.注意分情况讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
114
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为4,将正方形置于平面直角坐标系xOy中,使AB在x轴的负半轴上,A点的坐标是(-1,0).
(1)若经过点C的直线y=-
125
x-8
与x轴交于点E,求四边形AECD的面积;
(2)是否存在经过点E的直线l将正方ABCD分成面积相等的两部分?若存在,求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知正方形ABCD的边长为4,将正方形置于平面直角坐标系xOy中,使AB在x轴的负半轴上,A点的坐标是(-1,0).
(1)若经过点C的直线数学公式与x轴交于点E,求四边形AECD的面积;
(2)是否存在经过点E的直线l将正方ABCD分成面积相等的两部分?若存在,求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(28):23.5 二次函数的应用(解析版) 题型:解答题

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年河南省许昌市中考数学二模试卷(解析版) 题型:解答题

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

同步练习册答案