【题目】如图,AB=AC,AB的垂直平分线DE交BC延长线于E,交AC于F,∠A=40,AB+BC=6.
(1)△BCF的周长为多少?
(2)∠E的度数为多少?
【答案】(1)△BCF的周长为6; (2)∠E=20.
【解析】
(1)由AB的垂直平分线DE交BC延长线于E,交AC于F,根据线段垂直平分线的性质,可得AF=BF,即可得△BCF的周长为AC+BC,然后由AB=AC,AB+BC=6,求得答案;
(2)由AB=AC,∠A=40°,可求得∠ABC的度数,继而求得答案.
(1)∵DF是AB的垂直平分线
∴AF=BF,
∵AB+BC=6,AB=AC,
∴△BCF的周长为:BC+CF+BF=BC+CF+AF=BC+AC=AB+BC=6,
(2)∵AB=AC,∠A=40,
∴∠ABC=∠ACB=(18040)=70,
∵AB的垂直平分线DE交BC延长线于E,交AC于F,
∴∠BDE=90,
∴∠E=90∠ABC=20.
科目:初中数学 来源: 题型:
【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向,求货船的航行速度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC 是等边三角形,点 P 在△ABC 内,PA=2,将△PAB 绕点 A 逆时针旋转得到△P1AC,则 P1P 的长等于( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是( )
A. 小亮从袋中任意摸出一个球,摸出白球的概率是1
B. 小亮从袋中任意摸出一个球,摸出白球的概率是0
C. 在这次实验中,小亮摸出白球的频率是1
D. 由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④ ;⑤M到AD的距离等于BC的一半;其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是AB的垂直平分线EF上一点,连接CA,CB.以BC为直角边作Rt△BCD,且CB=CD,AD交EF于点H,BH交DC于点M.
(1)求证:∠HAC=∠HBC=∠HDC;
(2)判断△DHB的形状,并证明你的结论;
(3)若DH=1,AH=7,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:
∵,即,∴的整数部分为2,小数部分为.
请解答:(1)如果的小数部分为a,的整数部分为b,求的值;
(2)已知:,其中x是整数,且0<y<1.
求:①x、y的值;②x﹣y的相反数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com