【题目】如图,C是AB的垂直平分线EF上一点,连接CA,CB.以BC为直角边作Rt△BCD,且CB=CD,AD交EF于点H,BH交DC于点M.
(1)求证:∠HAC=∠HBC=∠HDC;
(2)判断△DHB的形状,并证明你的结论;
(3)若DH=1,AH=7,则BC= .
【答案】(1)见解析;(2)△DHB是直角三角形,理由见解析;(3)5
【解析】
(1)根据垂直平分线的性质和等边对等角定理,可得到结论;
(2)在△HMD和△CMB中,有一对对顶角相等,由(1)知∠HBC=∠HDC,故∠DHM=∠BCM=90°,所以△DHB是直角三角形;
(3)先得出DH=AH=7,然后用两次勾股定理,分别得到BD和BC,从而得解.
(1)证明:∵C是AB的垂直平分线EF上一点,
∴AC=BC,
∴∠CAB=∠CBA,
同理,∠HAB=∠HBA,
∴∠HAB-∠CAB=∠HBA-∠CBA即∠HAC=∠HBC,
又∵CB=CD,
∴AC=CD,
∴∠HAC=∠HDC,
∴∠HAC=∠HBC=∠HDC;
(2)由已知得∠BCM=90°,
在△HMD和△CMB中,有一对对顶角相等,由(1)知∠HBC=∠HDC,
故∠DHM=∠BCM=90°,
所以△DHB是直角三角形;
(3)∵H是AB的垂直平分线EF上一点,
∴BH=AH=7,
在直角三角形DHB中,
,
在等腰直角三角形BCD中,
,
故答案为:5.
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正确的结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=AC,AB的垂直平分线DE交BC延长线于E,交AC于F,∠A=40,AB+BC=6.
(1)△BCF的周长为多少?
(2)∠E的度数为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)写出阴影部分的面积是_________(写成两数平方差的形式);如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的面积是______(写成多项式乘法的形式);
(2)比较图,图阴影部分的面积,可以得到公式_________;
(3)运用你所得到的公式,计算下列各题:
①;
②(2m+n-p)(2m+n+p)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF
(2)若∠AEC=105°,求∠BCF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.
(1)求证:∠AEC=90°﹣2∠BAE;
(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;
(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_____;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com