【题目】(1)写出阴影部分的面积是_________(写成两数平方差的形式);如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的面积是______(写成多项式乘法的形式);
(2)比较图,图阴影部分的面积,可以得到公式_________;
(3)运用你所得到的公式,计算下列各题:
①;
②(2m+n-p)(2m+n+p)
【答案】(1)a-b,(a+b)(a-b) ;(2) a-b=(a+b)(a-b);(3)①99.96,②4m+4mn+n-p
【解析】
(1)根据阴影部分的面积等于两个正方形的面积的差即可求解,根据图示即可直接求解;
(2)根据图1中阴影部分的面积和图2中的矩形的面积相等即可得到公式;
(3)利用平方差公式及完全平方公式即可求解.
(1)写出阴影部分的面积是a-b,若将阴影部分裁剪下来,重新拼成一个矩形,它的面积是(a+b)(a-b) ,
故填:a-b,(a+b)(a-b) ;
(2)比较图,图阴影部分的面积,可以得到公式a-b=(a+b)(a-b);
故填:a-b=(a+b)(a-b);
(3)
①10.29.8=(10+0.2)(100.2)=1000.04=99.96.;
②(2m+n-p)(2m+n+p)
=(2 m+n)-p
=4m+4mn+n-p
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;
(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.
(3)求△ABO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是( )
A. 小亮从袋中任意摸出一个球,摸出白球的概率是1
B. 小亮从袋中任意摸出一个球,摸出白球的概率是0
C. 在这次实验中,小亮摸出白球的频率是1
D. 由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④ ;⑤M到AD的距离等于BC的一半;其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是AB的垂直平分线EF上一点,连接CA,CB.以BC为直角边作Rt△BCD,且CB=CD,AD交EF于点H,BH交DC于点M.
(1)求证:∠HAC=∠HBC=∠HDC;
(2)判断△DHB的形状,并证明你的结论;
(3)若DH=1,AH=7,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.
(1)若OF+BE=AB,求证:CF=CE.
(2)如图2,∠ECF=45°, S△ECF=6,求S△BEF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论不正确的结论是( )
A.CD=DN;B.∠1=∠2;C.BE=CF;D.△ACN≌△ABM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com