精英家教网 > 初中数学 > 题目详情

【题目】如图,C为线段AE上一动点(不与点AE重合),在AE同侧分别作等边△ABC和等边△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQ.以下五个结论:

①AD=BE②PQ∥AE③AP=BQ④DE=DP⑤∠AOB=60°

其中正确的结论的个数是( )

A. 2B. 3C. 4D. 5

【答案】C

【解析】

试题已知△ABC△DCE为正三角形, 故∠DCE=∠BCA=60°∴∠DCB=60°

又因为∠DPC=∠DAC+∠BCA∠BCA=60°∴∠DPC60°, 故DP不等于DE错.

∵△ABC△DCE为正三角形, ∴∠ACB=∠DCE=60°AC=BCDC=EC∴∠ACB+∠BCD=∠DCE+∠BCD

∴∠ACD=∠BCE∴△ACD≌△BCESAS), ∴∠CAD=∠CBEAD=BE,故正确;

∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB∵∠ACB=∠CBE+∠CEB=60°∴∠AOB=60°,故正确;

∵∠ACB=∠DCE=60°∴∠BCD=60°∴∠ACP=∠BCQ∵AC=BC∠DAC=∠QBC

∴△ACP≌△BCQASA), ∴AP=BQ,故正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解答题
(1)【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF

(2)【类比探究】
如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(3)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的两条角平分线BD、CE交于O,且A=60°,则下列结论中不正确的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l及其两侧两点A、B.

(1)在直线l上求一点O,使到A、B两点距离之和最短;

(2)在直线l上求一点P,使PA=PB;

(3)在直线l上求一点Q,使l平分AQB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AE⊥FE,垂足为E,且E是DC的中点.

(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)

(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;

(3)如图③,如果(1)中的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
则正确的结论是(

A.①②③④
B.②④⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD 中,E、F 分别为BC、AD 上的点,将四边形ABEF 沿直线EF 折叠后,点B 落在CD 边上的点G 处,点A 的对应点为点H.再将折叠后的图形展开,连接BF、GF、BG,若BF⊥GF.
(1)求证:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.

查看答案和解析>>

同步练习册答案