精英家教网 > 初中数学 > 题目详情

【题目】解答题
(1)【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF

(2)【类比探究】
如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(3)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

【答案】
(1)

证明:ED=EC=CF,

∵△BCE绕点C顺时针旋转60°至△ACF,

∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,

∴△CEF是等边三角形,

∴EF=EC,∠CEF=60°,

又∵ED=EC,

∴ED=EF,

∵△ABC是等腰三角形,∠BCA=60°,

∴△ABC是等边三角形,

∴∠CAF=∠CBA=60°,

∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,

∵∠CAF=∠CEF=60°,

∴A、E、C、F四点共圆,

∴∠AEF=∠ACF,

又∵ED=EC,

∴∠D=∠BCE,∠BCE=∠ACF,

∴∠D=∠AEF,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴DB=AE,BE=AF,

∵AB=AE+BE,

∴AB=DB+AF


(2)

证明:AB=BD﹣AF;

延长EF、CA交于点G,

∵△BCE绕点C顺时针旋转60°至△ACF,

∴∠ECF=60°,BE=AF,EC=CF,

∴△CEF是等边三角形,

∴EF=EC,

又∵ED=EC,

∴ED=EF,∠EFC=∠BAC=60°,

∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,

∴∠FCG=∠FEA,

又∵∠FCG=∠ECD,∠D=∠ECD,

∴∠D=∠FEA,

由旋转的性质,可得

∠CBE=∠CAF=120°,

∴∠DBE=∠FAE=60°,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴BD=AE,EB=AF,

∴BD=FA+AB,

即AB=BD﹣AF


(3)

证明:如图③,

ED=EC=CF,

∵△BCE绕点C顺时针旋转60°至△ACF,

∴∠ECF=60°,BE=AF,EC=CF,BC=AC,

∴△CEF是等边三角形,

∴EF=EC,

又∵ED=EC,

∴ED=EF,

∵AB=AC,BC=AC,

∴△ABC是等边三角形,

∴∠ABC=60°,

又∵∠CBE=∠CAF,

∴∠CAF=60°,

∴∠EAF=180°﹣∠CAF﹣∠BAC

=180°﹣60°﹣60°

=60°

∴∠DBE=∠EAF;

∵ED=EC,

∴∠ECD=∠EDC,

∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,

又∵∠EDC=∠EBC+∠BED,

∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,

∵∠AEF=∠CEF+∠BEC=60°+∠BEC,

∴∠BDE=∠AEF,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴BD=AE,EB=AF,

∵BE=AB+AE,

∴AF=AB+BD,

即AB,DB,AF之间的数量关系是:

AF=AB+BD


【解析】(1)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,AB=AE+BF,所以AB=DB+AF.(2)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠FCG=∠FEA,再根据∠FCG=∠EAD,∠D=∠EAD,可得∠D=∠FEA;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AB=BD﹣AF即可.(3)首先根据点E在线段BA的延长线上,在图③的基础上将图形补充完整,然后判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判断出∠DBE=∠EAF,∠BDE=∠AEF;最后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AF=AB+BD即可.
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B,求∠ACD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的两个实数根,且x1、x2满足不等式x1x2+2(x1+x2)>0,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB90°A22.5°,斜边AB的垂直平分线交AC于点D,点FAC上,点EBC的延长线上,CECF,连接BFDE.线段DEBF在数量和位置上有什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC关于原点O成中心对称的△A2B2C2

(2)求△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的顶点的坐标为,点轴正半轴上,点在第三象限的双曲线上,过点轴交双曲线于点,连接,则的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是一个供滑板爱好者使用的U型池,该U型池可以看成是一个长方体去掉一个“半圆柱”,中间可供滑行部分的截面是半径为4 m的半圆,其边缘ABCD=20 m,点ECD上,CE=2 m.一滑板爱好者从A点滑到E点,则他滑行的最短路程约为____________(边缘部分的厚度忽略不计,结果保留整数.提示:482≈222).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AE上一动点(不与点AE重合),在AE同侧分别作等边△ABC和等边△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQ.以下五个结论:

①AD=BE②PQ∥AE③AP=BQ④DE=DP⑤∠AOB=60°

其中正确的结论的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步练习册答案