精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC关于原点O成中心对称的△A2B2C2

(2)求△A2B2C2的面积.

【答案】
(1)解:①如图,△A1B1C1为所作

②如图,△A2B2C2为所作


(2)解:△A2B2C2的面积=3×4﹣ ×1×3﹣ ×3﹣ ×4×2=5
【解析】(1)①利用关于y轴对称的点的坐标特征写出A、B、C关于y轴的对称点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;②利用关于原点对称的点的坐标特征写出A、B、C关于y轴的对称点A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(2)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2B2C2的面积.
【考点精析】通过灵活运用作轴对称图形,掌握画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__ __,∠XBC+∠XCB=__ __;

(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是抛物线上两点,则y1<y2 , 其中说法正确的是(

A.①②
B.②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上分别标出与下列各数最邻近的两个整数所对应的点的位置.

(1); (2)-; (3)-; (4) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF

(2)【类比探究】
如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(3)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.

(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长.

查看答案和解析>>

同步练习册答案