精英家教网 > 初中数学 > 题目详情

【题目】如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.

(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.

【答案】
(1)解:∵A(﹣1,0)、B(3,0),

∴AO=1,OB=3,即AB=AO+OB=1+3=4.

∴OC=4,即点C的坐标为(0,4)


(2)解:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c,把A、C、B三点的坐标分别代入上式,

解得a=﹣ ,b= x,c=4,

∴所求的二次函数解析式为y=﹣ x2+ x+4.

∵点A、B的坐标分别为点A(﹣1,0)、B(3,0),

∴线段AB的中点坐标为(1,0),即抛物线的对称轴为直线x=1.

∵a=﹣ <0,

∴当x=1时,y有最大值y=﹣ + +4=


【解析】(1)首先求得AB,得出OC,求得点C的坐标;(2)利用待定系数法求的函数解析式,进一步利用顶点坐标公式求得最值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中MBC的中点且MN与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC关于原点O成中心对称的△A2B2C2

(2)求△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的顶点的坐标为,点轴正半轴上,点在第三象限的双曲线上,过点轴交双曲线于点,连接,则的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 AB 是⊙O 的直径,点 C、D 在⊙O 上,过 D 点作 PF∥AC交⊙O 于 F,交 AB 于点 E,∠BPF=∠ADC

(1)求证:AEEB=DEEF.

(2)求证:BP 是⊙O 的切线:

(3)当的半径为,AC=2,BE=1 时,求 BP 的长,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会为了解本校初中学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查.在确定调查对象时,大家提出以下几种方案:A.对各班班长进行调查;B.对某班的全体学生进行调查;C.从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会将收集到的数据整理后绘制成如图所示的条形统计图.

(1)为了使收集到的数据具有代表性.学生会在确定调查对象时应选择方案________ (A,BC);

(2)被调查的学生每天做作业所用时间的众数为________h;

(3)根据以上统计结果,估计该校900名初中学生中每天做作业用1.5 h的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

同步练习册答案