精英家教网 > 初中数学 > 题目详情
20.在平行四边形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺规作图,保留作图痕迹);
(2)在(1)的条件下,连接BE,判定△ABE的形状.(不要求证明).

分析 (1)根据角平分线的作法作∠BAD的平分线即可;
(2)延长AE交BC的延长线于点F,先由角平分线的性质得出∠DAE=∠BAE,再由平行线的性质得出∠BAE=∠DEA,故可得出∠DAE=∠DEA,故AD=DE,根据CD=2AD可知DE=CE,利用ASA定理得出△ADE≌△FCE,AD=CF,AE=EF,即△ABF是等腰三角形,据此可知BE⊥AF,△ABE是直角三角形.

解答 解:(1)如图,AE为所求;     

(2)△ABE为直角三角形.  
理由:延长AE交BC的延长线于点F,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴∠BAE=∠DEA,∠D=∠ECF,
∴∠DAE=∠DEA,
∴AD=DE.
∵CD=2AD,
∴DE=CE,
在△ADE与△FCE中,
∵$\left\{\begin{array}{l}{∠D=∠ECF}\\{DE=CE}\\{∠DEA=∠CEF}\end{array}\right.$,
∴△ADE≌△FCE(ASA),
∴AD=CF,AE=EF,
∴△ABF是等腰三角形,
∴BE⊥AF,即△ABE是直角三角形.

点评 本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.在平面直角坐标系中,点A、B的坐标分别为(-3,0)、(3,0),点P在反比例函数y=$\frac{9}{x}$的图象上.若△PAB为直角三角形,则满足条件的点P的个数为(  )
A.2个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足$\frac{CF}{DF}=\frac{1}{3}$,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=4.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系内,已知直线l1经过原点O 及A(2,2$\sqrt{3}$)两点,将直线l1向右平移4个单位后得到直线l2,直线l2与x 轴交于点B.

(1)求直线l2的函数表达式;
(2)作∠AOB 的平分线交直线l2于点C,连接AC.求证:四边形OACB是菱形;
(3)设点P 是直线l2上一点,以P 为圆心,PB 为半径作⊙P,当⊙P 与直线l1相切时,请求出圆心P 点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,要测量旗杆AB的高度,在地面C点处测得旗杆顶部A点的仰角为45°,从C点向外走2米到D点处,(B、C、D三点在同一直线上)测得旗杆顶部A点的仰角为37°,求旗杆AB的高度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知双曲线y=$\frac{1-m}{x}$,当x>0时,y随x的增大而减小,则m的取值范围为m<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=110厘米,∠BAC=37°,垂直支架CD=57厘米,DE是另一根辅助支架,且∠CED=60°.

(1)求辅助支架DE长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果精确到1厘米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在△ABC中,BD平分∠ABC,CE平分∠ACB,过点A分别作BD,CE的垂线,垂足分别为点M,N,连接MN.求证:MN=$\frac{1}{2}(AB+AC-BC)$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.2015年日照市人民政府投入1000万元用于改造乡村小学班班通工程建设,计划到2017年再追加投资210万元,如果每年的平均增长率相同,那么我市这两年该项投入的平均增长率为(  )
A.1.21%B.8%C.10%D.12.1%

查看答案和解析>>

同步练习册答案