精英家教网 > 初中数学 > 题目详情
如图,E是AB上一点,DE交AC于点F,F是DE的中点,AB∥DC.
求证:F是AC的中点.
分析:首先证明FE=FD,再根据平行线的性质可得∠A=∠DCF,∠AEF=∠D,然后可利用AAS定理证明△ABE≌△ACD,进而得到AF=CF.
解答:证明:∵F是DE的中点,
∴FE=FD.
∵AB∥DC,
∴∠A=∠DCF,∠AEF=∠D,
在△ABE和△ACD中,
∠A=∠DCF
∠AEF=∠D
FE=DF

∴△ABE≌△ACD(AAS).
∴AF=CF.
∴F是AC的中点.
点评:本题主要考查三角形全等的判定方法和性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED=
52
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,D是AB上一点,DF交AC于点E,AE=CE,FC∥AB,且AB=7,CF=5.求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,F是AB上一点,E是AC上一点,BE、CF相交于点D,∠A=70°,∠ACF=30°,∠ABE=20°,则∠BFC+∠BEC的度数为
190
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,试判断AE与CE有怎样的数量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数; (2)∠BFD的度数.

查看答案和解析>>

同步练习册答案