“阳光体育”活动在滨江学校轰轰烈烈第开展,为了解同学们最喜爱的体育运动项目,小李对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=
,直线y=
经过点C,交y轴于点G。
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?[源:Zxxk.Com]
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
函数
与函数
具有某种关系,因此已知函数
的图像,可以通过图形变换得到
的图像,给出下列变换①平移②旋转③轴对称④相似(相似比不为1),则可行的是( )
A.①③ B.②③ C.①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
李明在一次测验中做了3道习题,请你判断他是否都正确,若有不正确,请在答题卷相应题号后写上不正确,并写出正确的解答;若正确,则只在答题卷的相应题号后写上“正确”即可。
①化简
=![]()
②解不等式组
由(1)得
; 由(2)得
∴ ![]()
③计算
=2+2-1+1=4
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q。
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断⊿BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物
线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:线段a,b,∠α(
如图).请用直尺和圆规作一个平行四边形,使它的两条邻边长分别等于线段a,b,它们的夹角等于∠α.要求仅用直尺和圆规作图,写出
作法,并保留作图痕迹.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com