精英家教网 > 初中数学 > 题目详情
如图,PA是⊙O的切线,PA=2
3
,PB=2,⊙O的半径为
2
2
2
2
分析:连结OA,根据切线的性质得OA⊥PA,然后利用勾股定理可计算出OA.
解答:解:连结OA,如图,
∵PA是⊙O的切线,
∴OA⊥PA,
在Rt△OBP中,PO=2
3
,PA=2,
∴OA=
PO2-PA2
=2
2

故答案为2
2
点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2012届山东省临沂市莒南县九年级上学期期中考试数学试卷(带解析) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB="2BC"

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省临沂市莒南县九年级上学期期中考试数学试卷(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB=2BC

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;    
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(58)(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

同步练习册答案