精英家教网 > 初中数学 > 题目详情
20.如图,在△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于D,∠ACB的平分线交BD于点E,且CD=1,则DE的值为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{5}+1}{2}$C.$\frac{\sqrt{5}+3}{2}$D.$\sqrt{5}-1$

分析 由等腰三角形的性质及角平分线的定义可求得BD=AD=BC,BE=CE=CD,由△BCD∽△ABC可求得BD的长,从而可求得DE.

解答 解:
∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠BCE=∠DCE=36°,
∴BD=BC=AD,CD=CE=BE=1,
∴BCD∽△ABC,
∴$\frac{CD}{BC}$=$\frac{BC}{AC}$,即$\frac{CD}{BD}$=$\frac{BD}{BD+CD}$,
∴$\frac{1}{BD}$=$\frac{BD}{BD+1}$,解得BD=$\frac{1+\sqrt{5}}{2}$,
∴DE=BD-BE=BD-CD=$\frac{\sqrt{5}+1}{2}$-1=$\frac{\sqrt{5}-1}{2}$,
故选A.

点评 本题主要考查等腰三角形的判定和性质,利用相似三角形的性质求得BD的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.如图所示,一棵大树高8米,一场大风过后,大树在离地面3米处折断倒下,树的顶端落在地上,则此时树的顶端离树的底部有(  )米.
A.4B.6.5C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.对于任意一个多位数,如果他的各位数字之和除以一个正整数n所得的余数与他自身除以这个正整数n所得余数相同,我们就称这个多位数是n的“同余数”,例如:对于多位数1345,1345÷3=448…1,且(1+3+4+5)÷3=4…1,则1345是3的“同余数”.
(1)判断四位数2476是否是7的“同余数”,并说明理由.
(2)小明同学在研究“同余数”时发现,对于任意一个四位数如果是5的“同余数”,则一定满足千位、百位、十位这三位上数字之和是5的倍数.若有一个四位数,其千位上的数字是十位的上数字的两倍,百位上的数字比十位上的数字大1,并且该四位数是5的“同余数”,且余数是3,求这个四位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解下列方程:
(1)x2+4x-45=0;
(2)(x-5)2-2x+10=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,△ABC中,点E、F在BC边上,点D,G分别在AB,AC边上,四边形DEFG是矩形,若矩形DEFG面积与△ADG的面积相等,设△ABC的BC边上高AH与DG相交于点K,则$\frac{DG}{BC}$的值为(  )
A.1:1B.1:2C.2:3D.$\sqrt{2}$:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用适当的方法解方程:x2-5x-14=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知在同一平面内∠AOB=90°,∠AOC=60°.
(1)画∠AOC(不写画法,保留画图痕迹),则∠COB的度数为30°或150°;
(2)画OD平分∠BOC,OE平分∠AOC,则∠DOE的度数为45°;
(3)在(2)的条件下,将题目中的∠AOC=60°改成∠AOC=2a(a<45°)其它条件不变,你能求出∠DOE的度数吗?若能,请写出求解过程,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.将一副三角尺如图所示叠放在一起,则$\frac{BE}{CE}$的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=$\frac{3}{4}$,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或$\frac{7}{2}$;④0<BE≤5,其中正确的结论是①③(填入正确结论的序号)

查看答案和解析>>

同步练习册答案