精英家教网 > 初中数学 > 题目详情

【题目】如图,点EF分别在平行四边形ABCDBCAD上(EF都不与两端点重合),连结AEDEBFCF,其中AEBF交于点GDECF交于点H.令.若,则图中有_______个平行四边形(不添加别的辅助线);若,且四边形ABCD的面积为28,则四边形FGEH的面积为_______

【答案】4 7

【解析】

①若,则,先根据平行四边形的性质得出,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF、四边形CDFE都是平行四边形,从而可得,再根据 即可得出答案.

四边形ABCD是平行四边形

,即

四边形AECF、四边形BEDF都是平行四边形

四边形EGFH是平行四边形

综上,图中共有4个平行四边形

如图,连接EF

四边形ABEF、四边形CDFE都是平行四边形

故答案为:47

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点CCFAB交直线DN于点F.

1)当点D在线段BC上,∠NDB为锐角时,如图①.

①判断∠1与∠2的大小关系,并说明理由;

②过点FFMBC交射线AB于点M,求证:CF+BE=CD

2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CFBECD之间的数量关系;

②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CFBECD之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x-3与坐标轴交于A、B两点,抛物线经过点B,与直线y=x-3交于点E(8,5),且与x轴交于C,D两点.

(1)求抛物线的解析式;

(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;

(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AM为⊙O的切线,A为切点,过⊙O上一点BBDAM于点D,BD交⊙OC,OC平分∠AOB.

(1)求∠AOB的度数;

(2)若线段CD的长为2cm,求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,两个完全相同的三角形纸片重合放置,其中

1)操作发现:如图2,固定,使绕点旋转,当点恰好落在边上时,填空:①线段的位置关系是________;②设的面积为的面积为,则的数量关系是_____

2)猜想论证:当绕点旋转到如图3所示的位置时,请猜想(1)中的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.

3)拓展探究:已知平分于点(如图4).若在射线上存在点,使,请求相应的的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

1)求证:该一元二次方程总有两个实数根;

2)若该方程只有一个小于4的根,求m的取值范围;

3)若x1x2为方程的两个根,且nx12+x224,判断动点所形成的数图象是否经过点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数的图象分别与轴交于两点,正比例函数的图象交于点

1)求的值及的解析式;

2)求的值;

3)一次函数的图象为,且不能围成三角形,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1的小正方形组成的方格图.

1)请在方格图中建立平面直角坐标系,使点的坐标为(33),点的坐标为(10)

2)点的坐标为(41),在图中找到点,顺次连接点,并作出关于轴对称的图形

3中边边上的高为

查看答案和解析>>

同步练习册答案