【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
【答案】3≤S≤15.
【解析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
∵点A、B的坐标分别为(-5,0)、(-2,0),
∴AB=3,
y=-2x2+4x+8=-2(x-1)2+10,
∴顶点D(1,10),
由图象得:当0≤x≤1时,y随x的增大而增大,
当1≤x≤3时,y随x的增大而减小,
∴当x=3时,即m=3,P的纵坐标最小,
y=-2(3-1)2+10=2,
此时S△PAB=×2AB=×2×3=3,
当x=1时,即m=1,P的纵坐标最大是10,
此时S△PAB=×10AB=×10×3=15,
∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15;
故答案为:3≤S≤15.
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)
(1)过点C画AB的垂线,并标出垂线所过格点E;
(2)过点C画AB的平行线CF,并标出平行线所过格点F;
(3)直线CE与直线CF的位置关系是 ;
(4)连接AC,BC,则三角形ABC的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点H是边BC上一点(不与点B、点C重合).连接DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G.延长FG与BC的延长线交于点P,连接DF、DP、FH.
(1)∠FDH=______°;DF与DP的位置关系是______,DF与DP的大小关系是______;
(2)在(1)的结论下,若AD=4,求△BFH的周长;
(3)在(1)的结论下,若BP=8,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一条长度为 a 的线段.
(1)如图①,以该线段为直径画一个圆,该圆的周长 C1 = ;如图②,分别以该线段的一半为直 径画两个圆,这两个圆的周长的和 C2 = (都用含 a 的代数式表示,结果保留 )
(2)如图③,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为 C3 ,探索 C1 和 C3 的数量关系,并说明理由。
(3)如图④,当 a =10 时,以该线段为直径画一个大圆,再在大圆内画若干个小圆,这些小圆的直径都和 大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有圆的周长的和为 (结 果保留 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( )
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图所示,在平面直角坐标系中,四边形ABCO为梯形,BC∥AO,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,0).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据要求画图,并回答问题.
已知:直线AB,CD相交于点O,且OE⊥AB.
(1)过点O画直线MN⊥CD;
(2)若点F是(1)中所画直线MN上任意一点(O点除外),若∠AOC=35°,求∠EOF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)若⊙O的半径为4,∠BAC=60°,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com