【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是( )
A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)
C.(2n﹣1,2n﹣1)D.(2n﹣1,n)
【答案】A
【解析】
先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n1,2n1).
解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1), A2的坐标是(1,2),
设直线A1A2的解析式为:y=kx+b,
∴,
解得:,
∴直线A1A2的解析式是y=x+1.
∵点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴点B3的坐标为(7,4),
∴Bn的横坐标是2n1,纵坐标是2n1,
∴Bn的坐标是(2n1,2n1),
故选A.
科目:初中数学 来源: 题型:
【题目】珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:
月均用水量(单位:吨 | 频数 | 频率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合计 | d | 1.00 |
(1)b= ,c= ,并补全频数分布直方图;
(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;
(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧挂上物体后会伸长,(在弹性限度内)已知一弹簧的长度与所挂物体的质量之间的关系如下表:
物体的质量 | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧的长度 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 |
(1)当物体的质量为时,弹簧的长度是多少?
(2)如果物体的质量为,弹簧的长度为,根据上表写出与x的关系式;
(3)当物体的质量为时,求弹簧的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)解不等式2(4x-1)≥5x-8,并把它的解集在数轴上表示出来.
(2)如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(-3,0),B(-6,-2)C(-2,-5).将△ABC向上平移3个单位长度,再向右平移5个单位长度,得到△A1B1C1.
①在平面直角坐标系xOy中画出△A1B1C1.
②求△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有( )
①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;
③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,任意一个正整数都可以进行这样的分解:(是正整数,且),在的所有这种分解中,如果两因数之差的绝对值最小,我们就称是的最佳分解,产规定:,例如:12可以分解成,,,因为,所以是12的最佳分解,所以.
(1)求;
(2)若正整数是4的倍数,我们称正整数为“四季数”,如果一个两位正整数,(,为自然数),交换个位上的数字与十位上的数字得到的新两位正整数减去原来的两位正整数所得的差为“四季数”,那么我们称这个数为“有缘数”,求所有“有缘数”中的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.
(1)求出2018至2020年五一长假期间游客人次的年平均增长率;
(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com