精英家教网 > 初中数学 > 题目详情

作业宝如图,经过原点的⊙P与两坐标轴分别交于点A(2数学公式,0)和点B(0,2),C是优弧数学公式上的任意一点(不与点O,B重合),则tan∠BCO的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:连结AB,根据正切的定义得到tan∠A==,再根据圆周角定理得∠C=∠A,所以tan∠BCO=
解答:解:连结AB,如图,
∵∠AOB=90°,
而A(2,0)和点B(0,2),
∴tan∠A===
∵∠C=∠A,
∴tan∠BCO=
故选A.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,经过原点的抛物线的顶点为P,这条抛物线的对称轴x=2与x轴相交于点A,点B精英家教网、C在这条抛物线上,如果四边形OABC是菱形,
(1)求∠AOC的度数;
(2)求以这条抛物线为图象的二次函数的解析式;
(3)试探究:△ACP是否为直角三角形?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•太原二模)如图,经过原点的抛物线y1=x2+2x与x轴交于点A,将它平移得到抛物线y2=(x-2)2+1.有以下结论:
①y2是由y1先向上平移1个单位,再向右平移2个单位得到的;
②无论x取何值,y2≥1;
③当x=0时,y2-y1=5;
④当y1<0时,-2<x<0.
其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,经过原点的抛物线y=x2-2mx与x轴的另一个交点为A.过点P(m+1,
1
2
)作直线PH⊥y轴于点H,直线AP交y轴于点C.(点C不与点H重合)
(1)当m=2时,求点A的坐标及CO的长.
(2)当m>1时,问m为何值时CO=
3
2

(3)是否存在m,使CO=2.5HC?若存在,求出所有满足要求的m的值,并定出相对应的点C坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙湾区一模)如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案