精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,GBD上一点,连接CG并延长交BA的延长线于点F,交AD于点E

(1)求证:AG=CG

(2)求证:AG2=GE·GF

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;
(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.

解:(1)∵四边形ABCD是菱形,
∴AB∥CD,AD=CD,∠ADB=∠CDB,
在△ADG与△CDG中, ,

∴△ADG≌△CDG(SAS),
∴AG=CG;

(2)∵△ADG≌△CDG,AB∥CD
∴∠F=∠FCD,∠EAG=∠GCD,
∴∠EAG=∠F
∵∠AGE=∠AGE,
∴△AEG∽△FAG,

,

∴AG2=GEGF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,ADBCABBCAD=2,将腰CDD为中心逆时针旋转90°ED,连接AEDEADE的面积为3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克)35 35 34 39 37

(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?

(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ACBCCBC=aCA=bAB=c,下列选项中⊙O的半径为的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知经过原点的抛物线轴的另一个交点为,现将抛物线向右平移个单位长度,所得抛物线与轴交于,与原抛物线交于点,设的面积为,则用表示=__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程k2x2﹣2(k+1)x+1=0有两个实数根.

(1)求k的取值范围;

(2)当k=1时,设所给方程的两个根分别为x1x2,求(x1﹣2)(x2﹣2)的值.

查看答案和解析>>

同步练习册答案