精英家教网 > 初中数学 > 题目详情

【题目】如图,直角梯形ABCD中,ADBCABBCAD=2,将腰CDD为中心逆时针旋转90°ED,连接AEDEADE的面积为3,求BC的长.

【答案】5

【解析】试题分析:过D点作DGBC,垂足为G,过E点作EFAD,交AD的延长线与F点,由旋转的性质可知△CDG≌△EDF,从而有EFCG,由△ADE的面积可求EF,得出CG的长,由矩形的性质得BGAD,根据BCBGGC求解.

试题解析:

解:如图,作DGBCG,作EFADF.得矩形ABGD,则BGAD2

∵△ADE的面积为3

EF3

根据旋转的性质,可知DEDC

∵∠CDG+∠FDC =∠EDF+∠CDF 90°

∴∠GDC =∠EDF,又∠DGC =∠F 90°

∴△CDG≌△EDF

EFGC3

BCBGGC235

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一劳动节大酬宾!,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”、“10”、“20“50的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.

(1)该顾客至多可得到________元购物券

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 CD 在线段 AB PCD 是等边三角形,∠APB=120°

(1) 求证ACPPDB

(2) PC=3,AC=1,求 BD 的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,B=60°,BC=2.将ABC绕点C顺时针旋转得到A′B′C , 连结AB′.若A、B′、A′在同一条直线上,则AA′的长为(  )

A. 6 B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,且

1求抛物线的解析式及顶点的坐标;

2判断的形状,证明你的结论;

3轴上的一个动点,当的值最小时,求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.

1)在图1中,画出ABC的三条高的交点;

2)在图2中,画出ABCAB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,完成下列问题:

(1)在图中标出圆心D,则圆心D点的坐标为   

(2)连接AD、CD,则∠ADC的度数为   

(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,GBD上一点,连接CG并延长交BA的延长线于点F,交AD于点E

(1)求证:AG=CG

(2)求证:AG2=GE·GF

查看答案和解析>>

同步练习册答案