精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点,与轴交于点,且

1求抛物线的解析式及顶点的坐标;

2判断的形状,证明你的结论;

3轴上的一个动点,当的值最小时,求的值

【答案】1y=x2-x-2,顶点D的坐标为,-;2ABC是直角三角形,理由见解析;3m=

【解析】

试题分析1把点A代入函数解析式即可求得b值,可得抛物线的解析式,根据解析式直接求得顶点D的坐标即可;2由函数解析式可以求得其与x轴、y轴的交点坐标,即可求得AB、BC、AC的长,由勾股定理的逆定理可得三角形的形状;3先求得C关于x轴的对称点C,求得直线CD的解析式,与x轴的交点的横坐标即是m的值

试题解析1点A-1,0在抛物线y=

x2+bx-2上,

×-12+b×-1-2=0,

解得,b=-

抛物线的解析式为y=x2-x-2

y=x2-x-2=x2-3x-4=x-2-

顶点D的坐标为,-).

2当x=0时y=-2,

C0,-2,OC=2

当y=0时,

x2-x-2=0,

x1=-1,x2=4,

B4,0).

OA=1,OB=4,AB=5

AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,

AC2+BC2=AB2

∴△ABC是直角三角形

作出点C关于x轴的对称点C,则C0,2,OC=2,连接CD交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小

设直线CD的解析式为y=kx+n,

解得n=2,k=-

y=-x+2

当y=0时,-x+2=0,x=

m=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:

(1)求拱桥所在抛物线的解析式;

(2)当水面下降1m时,则水面的宽度为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:

(1)求反比例函数的表达式;

(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB⊙O的直径,C⊙O上一点,如图,AB=12,BC=4.BH⊙O相切于点B,过点CBH的平行线交AB于点E.

(1)CE的长;

(2)延长CEF,使EF=,连接BF并延长BF⊙O于点G,求BG的长;

(3)在(2)的条件下,连接GC并延长GCBH于点D,求证:BD=BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①所示是边长为的大正方形中有一个边长为的小正方形.图②是由图①中阴影部分拼成的一个长方形.

1)设图①中阴影部分的面积为,图②中阴影部分的面积为,请用含的式子表示: ;(不必化简)

2)以上结果可以验证的乘法公式是

3)利用(2)中得到的公式,计算:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为等边三角形,为射线上一点,为射线上一点,.

1)如图1,当点的延长线上且时,的中线吗?请说明理由;

2)如图2,当点的延长线上时,写出之间的数量关系,请说明理由;

3)如图3,当点在线段的延长线上,点在线段上时,请直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为;⑤两个相似多边形的面积比为,则周长的比为.”中,正确的个数有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个边长分别为的正方形如图①放置,其未重合部分(阴影部分)面积为S1 在图①中大正方形的右下角摆放一个边长为b的小正方形,得到图②,两个边长为b的小正方形重合部分(阴影部分)面积为S2.

1)用含ab的代数式分别表示S1S2.

2)若a+b=9ab=21,求S1+S2的值.

3)将两个边长分别为ab的正方形如图③放置.当S1+S2=30时,求出图③中阴影部分的面积S3.

查看答案和解析>>

同步练习册答案