【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:
(1)求反比例函数的表达式;
(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
【答案】(1)y= ;(2)y=﹣x+;
【解析】
(1)根据已知条件y=﹣x经过点A,且A点的纵坐标是2,求得点A的坐标,再把点A的坐标代入y=求得k值,即可求得反比例函数的解析式;(2)如图,过F作FD⊥AB于D,过A作AE⊥x轴,则∠FDO=∠OEA=90°,结合A(﹣4,2)可得AE=2,OE=4,AO=2,由此可得AB=2AO=4,根据三角形的面积公式求得DF==3,再证明△AOE∽△OFD,根据相似三角形的性质求得OF=,即可求得点F的坐标,设平移后的直线l2的函数表达式为y=﹣x+b,把点F的坐标代入即可求得b值,从而求得直线l2的函数表达式.
(1)直线l1:y=﹣x经过点A,且A点的纵坐标是2,
∴令y=2,则x=﹣4,
即A(﹣4,2),
∵反比例函数y=的图象经过A点,
∴k=﹣4×2=﹣8,
∴反比例函数的表达式为y=﹣;
(2)如图,过F作FD⊥AB于D,过A作AE⊥x轴,则∠FDO=∠OEA=90°,
∴AE=2,OE=4,AO=2,
∴AB=2AO=4,
∵直线l1与直线l2平行,△ABC的面积为30,
∴AB×DF=30,即×4×DF=30,
∴DF=3,
∵∠EOF=90°,
∴∠AOE+∠DOF=90°=∠OFD+∠DOF,
∴∠AOE=∠OFD,
∴△AOE∽△OFD,
∴=,即=,
∴FO=,
即F(0,),
设平移后的直线l2的函数表达式为y=﹣x+b,则
=0+b,
∴b=,
∴平移后的直线l2的函数表达式为y=﹣x+.
科目:初中数学 来源: 题型:
【题目】为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )
A. 极差是3.5 B. 众数是1.5 C. 中位数是3 D. 平均数是3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.
(1)求反比例函数的解析式;
(2)若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A﹙-2,-5﹚、C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA、OC,求△AOC的面积;
(3)写出使一次函数的值大于反比例函数的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)写出点B的坐标;
(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;
(4)计算△A′B′C′的面积﹒
(5)在x轴上存在一点P,使PA+PC最小,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“朗读者”节目的影响下,某中学开展了“好书伴我成长”的读书活动,为了解3月份七年级300名学生读书情况,随机调查了七年级50个学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 4 | 12 | 16 | 17 | 1 |
关于这组数据,下列说法正确的是( )
A. 众数是 17 B. 平均数是 2 C. 中位数是 2 D. 方差是 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点,且.
(1)求抛物线的解析式及顶点的坐标;
(2)判断的形状,证明你的结论;
(3)点是轴上的一个动点,当的值最小时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com