【题目】在“朗读者”节目的影响下,某中学开展了“好书伴我成长”的读书活动,为了解3月份七年级300名学生读书情况,随机调查了七年级50个学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 4 | 12 | 16 | 17 | 1 |
关于这组数据,下列说法正确的是( )
A. 众数是 17 B. 平均数是 2 C. 中位数是 2 D. 方差是 2
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位运动员在相同条件下各射靶次,每次射靶的成绩如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | __________ | ||
乙 | __________ | ||
丙 | __________ |
(2)根据表中数据分析,哪位运动员的成绩最稳定.并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点D为的中点,直角绕点D旋转,,分别与边,交于E,F两点,下列结论:①是等腰直角三角形;②;③;④,其中正确结论是( ).
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:
(1)求反比例函数的表达式;
(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:
决赛成绩(单位:分) | |
八年1班 | 80 86 88 80 88 99 80 74 91 89 |
八年2班 | 85 85 87 97 85 76 88 77 87 88 |
八年3班 | 82 80 78 78 81 96 97 87 92 84 |
解答下列问题:
(1)请填写下表:
平均数(分) | 众数(分) | 中位数(分) | |
八年1班 | 85.5 |
| 87 |
八年2班 | 85.5 | 85 |
|
八年3班 |
| 78 | 83 |
(2)请从以下两个不同的角度对三个班级的决赛成绩进行
①从平均数和众数相结合看(分析哪个班级成绩好些).
②从平均数和中位数相结合看(分析哪个班级成绩好些).
(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.
(1)求CE的长;
(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;
(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;
(2)把t=2代入(1)中二次函数解析式即可.
详解:(1)v=at2的图象经过点(1,2),
∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=,
由题意知,图象经过点(2,8),
∴k=16,
∴反比例函数的解析式为v=(2<t≤5);
(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.
点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.
【题型】解答题
【结束】
24
【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知为等边三角形,为射线上一点,为射线上一点,.
(1)如图1,当点在的延长线上且时,是的中线吗?请说明理由;
(2)如图2,当点在的延长线上时,写出之间的数量关系,请说明理由;
(3)如图3,当点在线段的延长线上,点在线段上时,请直接写出的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把能被13整除的数称为“自觉数”,已知一个整数,把其个位数字去掉,再从余下的数中加上个位数的4倍如果和是13的倍数,则原数为“自觉数”,如果数字仍然太大不能直接观察出来就重复此过程.如416:41+4×6=65,65÷13=5,所以416是自觉数;又如25281:2528+4×1=2532,253+4×2=261,26+4×1=30,因为30不能被13整除,所以25281不是“自觉数”.
(1)判断27365是否为自觉数 (填“是”或者“否”).
(2)一个四位数n=,规定F(n)=|a+d﹣b×c|,如:F(2019)=|2+9﹣0×1|=11,若四位数n能被65整除,且该四位数的千位数字和十位数字相同,其中1≤a≤4.求出所有满足条件的四位数n中,F(n)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com