【题目】如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)设AD=4,AB=x (x>0),BC=y (y>0).求y关于x的函数解析式.
【答案】
(1)解:过O作OE⊥CD于点E,则∠OED=90°.
∵⊙O与AM相切于点A,
∴∠OAD=90°.
∵OD平分∠ADE,
∴∠ADO=∠EDO.
∵OD=OD,
∴△OAD≌△OED.
∴OE=OA.
∵OA是⊙O的半径,
∴OE是⊙O的半径.
∴CD是⊙O的切线
(2)解:如图2所示:过O作OE⊥CD于点E,过点D作DF⊥BC于点F,则DF=AB=x.
∵AD=4,BC=y,
∴CF=BC﹣AD=y﹣4.
由切线长定理可得:DE=DA,CE=CB,
∴CD=CE+ED
=BC+AD
=4+y
在Rt△DFC中,
∵CD2=DF2+FC2
∴(y+4)=x2+(y﹣4)2.
整理得:y= x2,则y关于x的函数关系式为:y= x2
【解析】(1)过O作OE⊥CD于点E,则∠OED=90°.依据切线的性质可知∠OAD=90°,接下来证明△OAD≌△OED,依据全等三角形的性质可知OA=OE,故此OE为⊙O的半径,则CD是⊙O的切线;(2)如图2所示:过O作OE⊥CD于点E,过点D作DF⊥BC于点F,则DF=AB=x.由切线长定理可得:DE=DA,CE=CB,则CD=4+y,在Rt△DFC中依据勾股定理可得到(y+4)=x2+(y﹣4)2 , 从而可得到y与x的函数关系式.
科目:初中数学 来源: 题型:
【题目】在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=APAB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探究证明】
(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: = ;
【结论应用】
(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若 = ,则 的值为;
【联系拓展】
(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣1与反比例函数y= 的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣4,1)、B(﹣1,1)、C(﹣4,3).
(1)画出Rt△ABC关于原点O成中心对称的图形Rt△A1B1C1;
(2)若Rt△ABC与Rt△A2BC2关于点B中心对称,则点A2的坐标为、C2的坐标为
(3)求点A绕点B旋转180°到点A2时,点A在运动过程中经过的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣4ax+b与x轴的一个交点A的坐标为(3,0),与y轴交于点C.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)当a=﹣1时,将抛物线向上平移m个单位后经过点(5,﹣7).
①求m的值及平移前、后抛物线的顶点P、Q的坐标.
②设平移后抛物线与y轴交于点D,问:在平移后的抛物线上是否存在点E,使得△ECD的面积是△EPQ的3倍?若存在,请求出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A、B两地于上午9点钟同时出发,相向而行,已知甲的速度比乙快2千米/时,到上午11时两车还相距36千米,又过了2小时后,两车又相距36千米.
(1)求甲乙两地间的距离与两车的速度;
(2)若甲乙两车分别从A、B两地同时相向而行,到B、A两地后立即返回,求两车第一次相遇和第二次相遇所走的时间是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com