分析 (1)利用两组角相等即可得到两个三角形相似可找到所有相似的三角形;
(2)利用(1)中的△ADC∽△CDB,可得到结论.
解答 解:(1)∵∠ACB=90°,CD⊥AB,
∴∠A+∠B=∠BCD+∠B,
∴∠A=∠BCD,且∠ADC=∠CDB,
∴△ADC∽△CDB,
在△ADC和△ACB中,∠A=∠A,∠ADC=∠ACB,
∴△ADC∽△ACB,
同理可得△CDB∽△ACB,
∴图中所有相似的三角形有:△ADC∽△CDB,△ADC∽△ACB,△CDB∽△ACB;
(2)由△ADC∽△CDB,可得$\frac{AD}{CD}=\frac{CD}{BD}$,
∴CD2=AD•DB,
∵BD=2,AD=8,
∴CD2=16,
∴CD=4.
点评 本题主要考查三角形相似的判定和性质,掌握相似三角形的判定方法是解题的关键,在该题的图形中注意利用同角的余角相等找到角相等.
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com