精英家教网 > 初中数学 > 题目详情

【题目】如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面积为8 ,求AC的长.

【答案】
(1)证明:∵DE∥OC,CE∥OD,

∴四边形OCED是平行四边形.

∵四边形ABCD是矩形,

∴AO=OC=BO=OD.

∴四边形OCED是菱形


(2)解:∵∠ACB=30°,

∴∠DCO=90°﹣30°=60°.

又∵OD=OC,

∴△OCD是等边三角形.

过D作DF⊥OC于F,则CF= OC,设CF=x,则OC=2x,AC=4x.

在Rt△DFC中,tan60°=

∴DF= x.

∴OCDF=8

∴x=2.

∴AC=4×2=8.


【解析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.
【考点精析】根据题目的已知条件,利用矩形的性质和解直角三角形的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为 的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是(
A.②④
B.①④
C.②③
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5x<14,单位:m):

行驶次数

第一次

第二次

第三次

第四次

行驶情况

x

x

x﹣3

2(5﹣x)

行驶方向(填西”)

   

   

   

   

(1)请将表格补充完整;

(2)求经过连续4次行驶后,这辆出租车所在的位置;

(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.
(1)如果随机翻1张牌,那么抽中20元奖品的概率为
(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,请用列表或画树状图的方法求出所获奖品总值不低于30元的概率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.

(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鸡兔同笼问题是我国古代著名趣题之一,大约在 1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有 35 个头;从下面数,有 94 只脚 .求笼中各有几只鸡和兔?经计算可得( )

A. 20 只,兔 15 B. 12 只,兔 23

C. 15 只,兔 20 D. 23 只,兔 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】七年级班想买一些运动器材供班上同学阳光体育活动使用班主任安排班长去商店买篮球和排球下面是班长与售货员的对话:

班长阿姨您好! 售货员同学你好想买点什么?

根据这段对话你能算出篮球和排球的单价各是多少吗

六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装套装打 八折:2、满减活动:999 100,1999 200;两种活动不重复参与学校需要 15个篮球,13 个排球作为奖品请问如何安排购买更划算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个仓库共存有粮食60解决下列问题,3个小题都要写出必要的解题过程:

1甲仓库运进粮食14,乙仓库运出粮食10后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?

2如果甲仓库原有的粮食比乙仓库的2倍少3,则甲仓库运出多少粮食给乙仓库,可使甲、乙两仓库粮食数量相等?

3甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1,乙仓库运进的数量是本仓库原有粮食数量加上8所得的和的一半求此时甲、乙两仓库共有粮食多少?

查看答案和解析>>

同步练习册答案