精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,,点Dx轴上,若在线段包括两个端点上找点P,使得点ADP构成等腰三角形的点P恰好只有1,下列选项中满足上述条件的点D坐标不可以是  

A. B. C. D.

【答案】B

【解析】

先利用勾股定理计算出AB5,然后利用等腰三角形的判定方法对各选项进行判断.

解:∵A40),B03),

AB5

D点坐标为(30)时,只能作以PDPA为腰的等腰三角形;

D点坐标为(10)时,可作以PDPA为腰的等腰三角形也可作APAD(此时P点在B点);

D点坐标为(50)时,只能作以APAD为腰的等腰三角形;

D点坐标为(90)时,只能作以APAD为腰的等腰三角形(此时P点在B点).

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-21),B(-14),C(-33).

1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.

2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商店试销一款成本为 50 元的排球,规定试销期间单价不低于成本价,且获利不得高于 40%。经试销发现,销售量 (个)与销售单价 (元)之间满足如图所示的一次函数关系.

1)试确定 之间的函数关系式;

2)若该体育用品商店试销的这款排球所获得的利润为 元,试写出利润 (元)与销售单价 (元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)写出图中小于平角的角.

(2)求出∠BOD的度数.

(3)小明发现OE平分∠BOC,请你通过计算说明道理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为tt>0)秒.

(1)点C表示的数是   

(2)求当t等于多少秒时,点P到达点B处;

(3)点P表示的数是   (用含有t的代数式表示);

(4)求当t等于多少秒时,PC之间的距离为2个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.

解决问题:

(1)如图1,A=B=DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;

拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究ABBC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,点A的坐标为(0a,B,点C的坐标分别为(-b0),(b0.

1)如图,求点ABC的坐标;

2)如图,若点D在第一象限且满足AD=AC,∠DAC=90°,求BD

3)如图,在(2)的条件下,若在第四象限有一点E,满足∠BEC=BDC,请探究BECEAE之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6B是数轴上一点,且AB10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为tt0)秒.

1)写出数轴上点B表示的数   ;当t3时,OP   

2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时追上点P

3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时PR相距2个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(11分)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.

(1)求抛物线对应的函数表达式;

(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断AEF的形状,并说明理由;

(4)当E是直线y=﹣x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

查看答案和解析>>

同步练习册答案