精英家教网 > 初中数学 > 题目详情
学校要举行跳绳比赛,同学们都积极练习,甲同学跳180个所用的时间,乙同学可以跳210个,又已知甲每分钟比乙少跳20个,求每人每分钟各跳多少个.
解法一:
设甲每分钟跳x个,得
180
x
=
210
x+20

解得:x=120,
经检验,x=120是方程的解且符合题意,
120+20=140(个)
答:甲每分钟跳120个,乙每分钟跳140个;

解法二:
设乙每分钟跳x个,得
180
x-20
=
210
x

解得:x=140
经检验,x=140是方程的解且符合题意
140-20=120(个)
答:甲每分钟跳120个,乙每分钟跳140个.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

解方程:
x
x+1
=
2
3x+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某文具店老板第一次用1600元购进一批某种品牌文具,很快销售完毕;第二次购进该种品牌文具时,发现每件文具的进价比第一次上涨了2元.老板用2700元购进了第二批该种品牌的文具,所购进文具的数量是第一次购进数量的1.5倍,同样很快销售完毕.两批文具的售价均为每件22元.
(1)问第二次购进了多少件该种品牌的文具?
(2)文具店老板在这两笔生意中共盈利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

列分式方程(组)解应用题:
A、B两地相距50千米.甲骑自行车从A地出发1.5小时后,乙骑摩托车从A地出发追赶甲.已知乙的速度是甲的速度的2.5倍,且乙比甲早1小时到达B地,求甲、乙的速度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.
(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?
(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某县为加固长90米,高5米,坝顶宽为4米,迎水坡和背水坡的坡度都是1:1的横断面是梯形的防洪大坝.要将大坝加高1米,背水坡坡度改为1:1.5.已知坝顶宽不变.
(1)求大坝横截面面积增加多少平方米?
(2)要在规定时间内完成此项工程.如果甲队单独做将拖延10天完成,乙队单独做将拖延6天完成.现在甲队单独工作2天后,乙队加入一起工作,结果提前4天完成.求原来规定多少天完成和每天完成的土方数?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
方案一:甲队单独完成这项工程刚好能够如期完成;
方案二:乙队单独完成这项工程要比规定的时间多用10天;
方案三:若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.
又从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.
试问,在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
解题方案:
设甲队单独完成需x天,则乙队单独完成需(x+10)天.
(1)用含x的代数式表示:
甲队每天可以完成这项工程的工作量是工程总量的______
乙队每天可以完成这项工程的工作量是工程总量的______
根据题意,列出相应方程______
解这个方程,得______
检验:______
(2)方案一得工程款为______;
方案二不合题意,舍去
方案三的工程款为______
所以在不耽误工期的前提下,应选择方______能节省工程款.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道假分数可以化为带分数.例如:
8
3
=2+
2
3
=2
2
3
.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:
x-1
x+1
x2
x-1
这样的分式就是假分式;
3
x+1
2x
x2+1
这样的分式就是真分式.类似的,假分式也可以化为带分式(即整式与真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1+
1
x-1

(1)将分式
x-1
x+2
化为带分式;
(2)若分式
2x-1
x+1
的值为整数,求x的整数值.

查看答案和解析>>

同步练习册答案