精英家教网 > 初中数学 > 题目详情
精英家教网如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN于P,连PA,则∠APN=
 
分析:根据等边三角形的三条边相等,每个角都是直角可以证明△ABN与△AMC全等,根据全等三角形对应角相等可以得到∠ANP=∠ACP,然后证明△ANE与△PCE相似,根据相似三角形对应边成比例可得
AE
PE
=
NE
CE
,从而得到△APE与△NCE相似,再根据相似三角形对应角相等的性质即可证明∠APN=∠ACN=60°.
解答:解:∵△ABM和△ACN都是等边三角形,
∴AB=AM,AN=AC,∠BAM=∠CAN=60°,
∴∠BAM+∠BAC=∠CAN+∠BAC,
即∠CAM=∠BAN,
在△ABN与△AMC中,
AB=AM
∠CAM=∠BAN
AC=AN

∴△ABN≌△AMC(SAS),
∴∠ANP=∠ACP,
又∵∠AEN=∠PEC(对顶角相等),
∴△ANE∽△PCE,
AE
PE
=
NE
CE

∵∠AEP=∠NEC(对顶角相等),
∴△APE∽△NCE,
∴∠APN=∠ACN=60°.
故答案为:60°.
点评:本题主要考查了等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,判定相似三角形是解题的关键,也是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知:△ABC为边长是4
3
的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).

(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为4
3
的正方形,△ABC的移动速度为每秒
3
个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒2
3
个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒().

【小题1】在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
【小题2】如图2,当点A与点D重合时,作的角平分线EM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
【小题3】如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得,若存在,请求出t的值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市九年级上学期期末考试数学试卷(解析版) 题型:解答题

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒().

1.在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;

2.如图2,当点A与点D重合时,作的角平分线EM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.

3.如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得,若存在,请求出t的值;若不存在,请说明理由

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN于P,连PA,则∠APN=________.

查看答案和解析>>

同步练习册答案