精英家教网 > 初中数学 > 题目详情
11.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是(  )
A.6B.7C.8D.9

分析 先确定两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,于是可根据此规律得到平面上不同的8个点最多可确定(1+2+3+4+5+6+7)=28条直线.

解答 解:两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,
因为1+2+3+4+5+6+7=28,
所以平面上不同的8个点最多可确定28条直线.
故选C.

点评 本题考查了直线、射线、线段:直线用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB;射线是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边;线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.(1)计算:(12a3-6a2)÷3a-2a(2a-1);
(2)解分式方程:$\frac{3}{2x-4}$-$\frac{x}{x-2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,小明用长为3m的竹竿CD做测量共计,测量学校旗杆AB的高度,移动竹竿,使O、C、A在同一直线上,此时OD=6m,DB=12m,则旗杆AB的高为9m.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列方程中解为x=2的是(  )
A.3x+(10-x)=20B.4(x+0.5)+x=7C.x=-$\frac{1}{2}$x+3D.$\frac{1}{7}$(x+14)=$\frac{1}{4}$(x+20)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某公司要把一批物品运往外地,现有两种运输方式可供选择:
方式一:使用快递公司运输,装卸费400元,另外每千米再加收4元;
方式二:使用火车运输,装卸费820元,另外每千米再加收2元.
(1)若两种运输的总费用相等,则运输路程是多少?
(2)若运输路程是800千米,这家公司应选用哪一种运输方式?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如果a的倒数是-1,那么a2等于(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若多项式2x2+3x+7的值为8,则多项式2-6x2-9x的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在⊙O中,已知$\widehat{AB}$=$\widehat{CD}$,则AC与BD的关系是(  )
A.AC=BDB.AC<BDC.AC>BDD.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,在铁路线CD同侧有两个村庄A,B,它们到铁路线的距离分别是15km和10km,作AC⊥CD,BD⊥CD,垂足分别为C,D,且CD=25,现在要在铁路旁建一个农副产品收购站E,使A,B两村庄到收购站的距离相等,用你学过的知识,通过计算,确定点E的位置.

查看答案和解析>>

同步练习册答案