精英家教网 > 初中数学 > 题目详情

如图甲所示,若△ABC与△DCB是全等图形,且ADBC是对应顶点,则进行以下变换可以使这两个三角形重合:

先把△ABC沿着______,如图乙所示;

再把△ABC绕着______,如图丙所示;

最后把△ABC沿着______,如图丁所示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答:
 
.(填“能”或“不能”)
(2)设AA1=A1A2=A2A3=1.
①θ=
 
度;
②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…) 求出此时a2,a3的值,并直接写出an(用含n的式子表示).
精英家教网

活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1
数学思考:
(3)若已经摆放了3根小棒,θ1=
 
,θ2=
 
,θ3=
 
;(用含θ的式子表示)
(4)若只能摆放4根小棒,求θ的范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乐山模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.

(1)证明:AB•CD=PB•PD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:044

已知△ABC内接于⊙O,过点A作直线EF

(1如图甲所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):(1_______;(2__________

   

  

(2如图乙所示,若AB不是⊙O的直径而是弦,且∠CAE =BEF是⊙O的切线吗?试证明你的判断。

查看答案和解析>>

同步练习册答案